˝ŹQVNXQVú
[ŹęŻ]
@@@@@ć325ńwIČĺđ
@@@@@@đĺWúÔF830ú`927ú
mÔ°şĚ߼ÍŢŮǰ˛ĚłŔn
uw´âďâvú{ŔĆoĹĐiŹěcęjđÇńŢÄA[RvExk[Ci1654N`1705NjŞşLĚłŔĚlđßĢ˝Ć˘Ä čÜľ˝B
@
QlFŢĚíÉnExk[Ci1667N`1748NjŞ˘ÜˇBIC[i1707`1783NjĚśtÉíĚnŞ˘ÜˇB
NO1uńxĐŻŘv 08/30
0949Ş@óM XV 9/27
ć325ńwIČĺâčĚđđčܡD
ć뾨袾ܡD
()
â1: 2
â2: 6
â3: 26
â4: 150
łŽ n ĆŽ k (0
k) ÉÎľÄCA(n,k)đĚć¤Éč`ˇéD
A(n,k)=°[j=0..k]((-1)^j)*comb(n+1,j)*(k-j)^n.
(k>nĚĆŤÍ
A(n,k)=0ĆČéD)
ąĚĆŤC°[k0]A(n,k)*t^k ÍĚć¤ÉČéD
°[k0]A(n,k)*t^k
=°[k0](°[j=0..k]((-1)^j)*comb(n+1,j)*(k-j)^n)*t^k
=°[k0](°[j=0..k]((-1)^(k-j))*comb(n+1,k-j)*j^n)*t^k
=°[j0]°[kj]((-1)^(k-j))*comb(n+1,k-j)*j^n)*t^k
=°[j0](j^n)*(t^j)°[kj]comb(n+1,k-j)*t^(k-j)
=°[j0](j^n)*(t^j)*(1-t)^(n+1).
ćÁÄC
°[j0](j^n)*(t^j) =
(1-t)^(-n-1)*°[k0]A(n,k)*t^k.
CÓĚłŽ m ÉÎľÄC
f(m)=°[k1](k^m)/(2^k) ơéĆC
f(m)=°[k0](k^m)/(2^k)
=°[j0](j^m)*((1/2)^j)
=(1-1/2)^(-m-1)*°[k0]A(m,k)*(1/2)^k
=(1/2)^(-m-1)*°[k=0..m](1/2)^k*(°[j=0..k]((-1)^j)*comb(m+1,j)*(k-j)^m).
ąĚvZŽđgÁÄvZˇéĆC
f(1)=2,f(2)=6,f(3)=26,f(4)=150.
Ü˝áŚÎC
f(100)
=11133509631364650299699656360843806862971167990688281554425819235539210812744
137555815269127221215916681393895912461647364346849254775983678654845346975177
59492540384054716630.
NO2uuchinyanv
08/30 1611Ş@óM
uuchinyanv
09/04 1138Ş@óM XV 9/27
ľęĘIÉlŚÄÝܡB
ČşĹÍCkCn đ 1 ČăĚŽCm đ 0 ČăĚŽCr đ -1 < r < 1 ĚŔƾܡB
ܸClim[n->]{n^m * r^n} = 0CšB
ąęÍCr = 0 ĚęÍžçŠČĚĹC0 < |r| < 1 đŚšÎ˘˘ĹˇB
ťąĹCa đłĚŔĆľÄC|r| = 1/(1 + a)C(1 + a)^n = °[i=0,n]{nCi * a^i}CĆČčC
n Ş m ćčŕ\ŞÉ卢łĚŽĚęÉÍC
(1 + a)^n
> nC(m+1) * a^(m+1) = n(n-1)(n-2)c(n-m)/(m+1)! * a^(m+1)C
0 < n^m
* |r|^n = n^m/(1 + a)^n < n^m/(nC(m+1) * a^(m+1)) = (m+1)!/a^(m+1) * 1/(n(1
- 1/n)(1 - 2/n)c(1 - m/n))C
0 <=
lim[n->]{n^m * |r|^n} <= (m+1)!/a^(m+1) * lim[n->]{1/n} *
lim[n->]{1/(1 - 1/n)(1 - 2/n)c(1 - m/n))} = 0C
lim[n->]{n^m
* |r|^n} = 0C
ąęćčC- |r| <= r <= |r|C- n^m * |r|^n <=
n^m * r^n <= n^m * |r|^nCČĚĹC
lim[n->]{n^m
* r^n} = lim[n->]{n^m * |r|^n} = 0C
ÇCr = 0 ŕÜßÄC
lim[n->]{n^m
* r^n} = 0C
Ş˘ŚÜˇB
łÄCSm(n) = °[k=1,n]{k^m * r^k}CSm =
lim[n->]{Sm(n)} = °[k=1,]{k^m * r^k}CƾܡB
m = 0
S0(n) =
°[k=1,n]{r^k} = r(1 - r^n)/(1 - r)C
S0 =
lim[n->]{S0(n)} = r/(1 - r)C
m = 1
S1(n) =
°[k=1,n]{k * r^k}Cr * S1(n) = °[k=1,n]{k *
r^(k+1)}C
(1 -
r)S1(n) = °[k=1,n]{(k - (k-1))r^k} - n * r^(n+1) = °[k=1,n]{r^k} - n * r^(n+1)
= S0(n) - n * r^(n+1)C
(1 - r)S1
= S0 - 0 = S0 = r/(1 - r)C
S1 = r/(1
- r)^2C
m = 2
S2(n) =
°[k=1,n]{k^2 * r^k}Cr * S2(n) = °[k=1,n]{k^2 *
r^(k+1)}C
(1 -
r)S2(n) = °[k=1,n]{(k^2 - (k-1)^2)r^k} - n^2 * r^(n+1)
=
°[k=1,n]{(2k - 1)r^k} - n^2 * r^(n+1)
= 2 *
°[k=1,n]{k * r^k} - °[k=1,n]{r^k} - n^2 * r^(n+1)
= 2 *
S1(n) - S0(n) - n^2 * r^(n+1)C
(1 - r)S2
= 2 * S1 - S0 - 0 = 2 * S1 - S0 = 2r/(1 - r)^2 - r/(1 - r)C
S2 = 2r/(1
- r)^3 - r/(1 - r)^2 = r(r + 1)/(1 - r)^3C
m = 3
S3(n) =
°[k=1,n]{k^3 * r^k}Cr * S3(n) = °[k=1,n]{k^3 *
r^(k+1)}C
(1 -
r)S3(n) = °[k=1,n]{(k^3 - (k-1)^3)r^k} - n^3 * r^(n+1)
=
°[k=1,n]{(3k^2 - 3k + 1)r^k} - n^3 * r^(n+1)
= 3 *
°[k=1,n]{k^2 * r^k} - 3 * °[k=1,n]{k * r^k} + °[k=1,n]{r^k} - n^3 * r^(n+1)
= 3 *
S2(n) - 3 * S1(n) + S0(n) - n^3 * r^(n+1)C
(1 - r)S3
= 3 * S2 - 3 * S1 + S0 - 0 = 3 * S2 - 3 * S1 + S0 = 3r(r + 1)/(1 - r)^3 - 3r/(1
- r)^2 + r/(1 - r)C
S3 = 3r(r
+ 1)/(1 - r)^4 - 3r/(1 - r)^3 + r/(1 - r)^2 = r(r^2 + 4r + 1)/(1 - r)^4C
m = 4
S4(n) =
°[k=1,n]{k^4 * r^k}Cr * S34(n) = °[k=1,n]{k^4 *
r^(k+1)}C
(1 -
r)S4(n) = °[k=1,n]{(k^4 - (k-1)^4)r^k} - n^4 * r^(n+1)
=
°[k=1,n]{(4k^3 - 6k^2 + 4k - 1)r^k} - n^4 * r^(n+1)
= 4 *
°[k=1,n]{k^3 * r^k} - 6 * °[k=1,n]{k^2 * r^k} + 4 * °[k=1,n]{k * r^k} +-
°[k=1,n]{r^k} - n^4 * r^(n+1)
= 4 *
S3(n) - 6 * S2(n) + 4 * S1(n) - S0(n) - n^4 * r^(n+1)C
(1 - r)S4
= 4 * S3 - 6 * S2 + 4 * S1 - S0 - 0 = 4 * S3 - 6 * S2 + 4 * S1 - S0
= 4r(r^2 +
4r + 1)/(1 - r)^4 - 6r(r + 1)/(1 - r)^3 + 4r/(1 - r)^2 - r/(1 - r)C
S4 =
4r(r^2 + 4r + 1)/(1 - r)^5 - 6r(r + 1)/(1 - r)^4 + 4r/(1 - r)^3 - r/(1 - r)^2
= r(r^3 +
11r^2 + 11r + 1)/(1 - r)^5C
ęʮ𫺷ĚÍďľť¤ĹˇŞCQťŽĆľÄCžçŠÉC
Sm =
(°[i=0,m-1]{mCi * (-1)^(m-1-i) * Si})/(1 - r)
ƯܡËB
ąęçĚŽĚąoÉÍ÷Şđg¤ű@ŕ čܡB
Sm+1(n) =
°[k=1,n]{k^(m+1) * r^k} = r * d(°[k=1,n]{k^m * r^k})/dr = r * d(Sm(n))/drC
Sm+1 =
lim[n->]{Sm+1(n)} = lim[n->]{r * d(Sm(n))/dr}C
đpľÜˇBąąĹCęĘÉCf(r) đ r^n đÜÜȢŽĆľÄCr^n * f(r) đlŚéĆC
r * d(r^n
* f(r))/dr = nr^n * f(r) + r^n * r * df/dr
ĆČÁÄCÄŃ r^n đÜŢŽÉČčܡB
ťąĹClim[n->]{n^m * r^n} = 0CŠçCn-> ĹÍąĚÍ 0 ÉČčܡB
ÂÜčCr^n đÜŢÍClim[n->]{r * d(c)/dr} ĚvZĘÉÍřŠČ˘ĚĹC
ĹŠçąĚđ˘ÄvZľÄ˘˘ąĆÉČčܡB
ČăĚąĆđĽÜŚÄvZľÜˇB
m = 0
S0(n) =
°[k=1,n]{r^k} = r(1 - r^n)/(1 - r) = r/(1 - r) - r^(n+1)/(1 - r)
S0 =
lim[n->]{S0(n)} = r/(1 - r)C
ąĚŽŠçŞŠčܡŞCr^n đÜŢÍCąęČ~ŕ S0(n) Ě r^n đÜފ羊ťęÜšńB
ťąĹCČşĚvZĹKvČĚÍ S0(n) ĚĹĚžŻĹCąęÍ S0 ĹCľŠŕ S0 ÉÍ n ŞťęÜšńB
ÂÜčCČşĚvZĹÍCn-> ČľĹCS0 đ r
* d(c)/dr ˇéžŻĹ˘˘ąĆÉČčܡB
ąęÍCÇCSm+1 = r * d(Sm)/drCƿšB
m = 1
S1 = r *
d(S0)/dr = r * d(r/(1 - r))/dr = r/(1 - r)^2C
m = 2
S2 = r *
d(S1)/dr = r * d(r/(1 - r)^2)/dr
= r((1 -
r)^2 - r(2(1 - r)(-1)))/(1 - r)^4 = r(r + 1)/(1 - r)^3C
m = 3
S3 = r *
d(S2)/dr = r * d(r(r + 1)/(1 - r)^3)/dr
= r((2r +
1)(1 - r)^3 - r(r + 1)(3(1 - r)^2(-1)))/(1 - r)^6
= r(r^2 +
4r + 1)/(1 - r)^4C
m = 4
S4 = r *
d(S3)/dr = r * d(r(r^2 + 4r + 1)/(1 - r)^4)/dr
= r((3r^2
+ 8r + 1)(1 - r)^4 - r(r^2 + 4r + 1)(4(1 - r)^3(-1)))/(1 - r)^8
= r(r^3 +
11r^2 + 11r + 1)/(1 - r)^5C
ąęŕCvZű@ÍPŠÂžçŠĹˇŞCęʮ𫺷ĚÍďľť¤ĹˇB
ÇC
S0 = r/(1
- r)C
S1 = r/(1
- r)^2C
S2 = r(r +
1)/(1 - r)^3C
S3 = r(r^2
+ 4r + 1)/(1 - r)^4C
S4 = r(r^3
+ 11r^2 + 11r + 1)/(1 - r)^5C
ÉČčܡB
âPF
S1 Ĺ r = 1/2 ơęÎćC
S1 =
(1/2)/(1 - 1/2)^2 = 2
âQF
S2 Ĺ r = 1/2 ơęÎćC
S2 =
(1/2)(1/2 + 1)/(1 - 1/2)^3 = 2(1 + 2) = 6
âRF
S3 Ĺ r = 1/2 ơęÎćC
S3 =
(1/2)((1/2)^2 + 4(1/2) + 1)/(1 - 1/2)^4 = 2(1 + 8 + 4) = 26
âSF
S4 Ĺ r = 1/2 ơęÎćC
S4 =
(1/2)((1/2)^3 + 11(1/2)^2 + 11(1/2) + 1)/(1 - 1/2)^5 = 2(1 + 22 + 44 + 8) = 150
(Ęđ)
Sm =
(°[i=0,m-1]{mCi * (-1)^(m-1-i) * Si})/(1 - r)
đpľÜˇBąĚŽĆ S0 = r/(1 - r) đ r = 1/2 Ĺg˘ÜˇB
Sm = 2 *
°[i=0,m-1]{mCi * (-1)^(m-1-i) * Si}C
S0 = 1
âPF
S1 = 2 *
(1C0 * (-1)^0 * S0) = 2 * 1 = 2
âQF
S2 = 2 *
(2C0 * (-1)^1 * S0 + 2C1 * (-1)^0 * S1) = 2 * (- 1 + 4) = 2 * 3 = 6
âRF
S3 = 2 *
(3C0 * (-1)^2 * S0 + 3C1 * (-1)^1 * S1 + 3C2 * (-1)^0 * S2)
= 2 * (1 -
6 + 18) = 2 * 13 = 26
âSF
S4 = 2 *
(4C0 * (-1)^3 * S0 + 4C1 * (-1)^2 * S1 + 4C2 * (-1)^1 * S2 + 4C3 * (-1)^0 * S3)
= 2 * (- 1
+ 8 - 36 + 104) = 2 * 75 = 150
(l@)
ťĚăCęĘŽđाlŚÄÝÜľ˝B˘ÜĐĆÂĚ´śŕ čܡŞCęC˘Ä¨ŤÜˇB
÷Şđg¤ű@ĹlŚÜˇB
Sm = r *
d(Sm-1)/drC
S0 = r/(1
- r) = - 1 + 1/(1 - r)C
S1 = r *
d(S0)/dr = r * d(- 1 + 1/(1 - r))/dr
= r/(1 -
r)^2 = - 1/(1 - r) + 1/(1 - r)^2C
S2 = r *
d(S1)/dr = r * d(- 1/(1 - r) + 1/(1 - r)^2)/dr
= - r/(1 -
r)^2 + 2r/(1 - r)^3 = 1/(1 - r) - 3/(1 - r)^2 + 2/(1 - r)^3
S3 = r *
d(S2)/dr = r * d(1/(1 - r) - 3/(1 - r)^2 + 2/(1 - r)^3)/dr
= r/(1 -
r)^2 - 6r/(1 - r)^3 + 6r/(1 - r)^4
= - 1/(1 -
r) + 7/(1 - r)^2 - 12/(1 - r)^3 + 6/(1 - r)^4C
S4 = r *
d(S3)/dr = r * d(- 1/(1 - r) + 7/(1 - r)^2 - 12/(1 - r)^3 + 6/(1 - r)^4)/dr
= - r/(1 -
r)^2 + 14r/(1 - r)^3 - 36r/(1 - r)^4 + 24r/(1 - r)^5
= 1/(1 -
r) - 15/(1 - r)^2 + 50/(1 - r)^3 - 60/(1 - r)^4 + 24/(1 - r)^5
c
ąęçĚvZŠçCm >= 1 Ĺ Sm = °[n=1,m+1]{a(m,n)/(1 -
r)^n}CƨŻÄC
a(m+1,n) =
(n-1) * a(m,n-1) - n * a(m,n)Ca(0,1) = 1Cn <= 0 Í n >= m+2 Ĺ a(m,n) = 0C
ĆČčܡBąĚQťŽÍĚć¤ÉľÄđąĆŞĹŤÜˇB
a(m+1,1) =
- a(m,1)Ca(0,1) = 1C
a(m,1) =
(-1)^mC
a(m+1,2) =
a(m,1) - 2 * a(m,2) = (-1)^m - 2 * a(m,2)C
a(m+1,2)/(-2)^(m+1)
- a(m,2)/(-2)^m = 1/(-2) * (1/2)^mCa(0,2) = 0C
a(m,2)/(-2)^m
= 1/(-2) * °[k=0,m-1]{(1/2)^k} = 1/(-2) * (1 - (1/2)^m)/(1 - 1/2) = (1/2)~m - 1C
a(m,2) =
(-1)^m * (1 - 2^m)C
a(m+1,3) =
2 * a(m,2) - 3 * a(m,3) = 2 * (-1)^m * (1 - 2^m) - 3 * a(m,3)C
a(m+1,3)/(-3)^(m+1)
- a(m,3)/(-3)^m = 2/(-3) * ((1/3)^m - (2/3)^m)Ca(1,3) = 0C
a(m,3)/(-3)^m
= 2/(-3) * °[k=1,m-1]{(1/3)^k - (2/3)^k}
= 2/(-3) *
((1/3)(1 - (1/3)^(m-1))/(1 - 1/3) - (2/3)(1 - (2/3)^(m-1))/(1 - 2/3))
= 1/(-3) *
((1 - (1/3)^(m-1)) - 4(1 - (2/3)^(m-1)))
= (1/3)^m
- 2(2/3)^m + 1
a(m,3) =
(-1)^m * (1 - 2 * 2^m + 3^m)C
a(m+1,4) =
3 * a(m,3) - 4 * a(m,4) = 3 * (-1)^m * (1 - 2 * 2^m + 3^m) - 4 * a(m,4)C
a(m+1,4)/(-4)^(m+1)
- a(m,4)/(-4)^m = 3/(-4) * ((1/4)^m - 2 * (2/4)^m + (3/4)^m)Ca(2,4) = 0C
a(m,4)/(-4)^m
= 3/(-4) * °[k=2,m-1]{(1/4)^k - 2 * (2/4)^k + (1/4)^k}
= 3/(-4) *
((1/4)^2 * (1 - (1/4)^(m-2))/(1 - 1/4) - 2 * (2/4)^2 * (1 - (2/4)^(m-2))/(1 -
2/4)
+ (3/4)^2
* (1 - (3/4)^(m-2))/(1 - 3/4))
= 1/(-4^2)
* ((1 - (1/4)^(m-2)) - 12(1 - (2/4)^(m-2)) + 27(1 - (3/4)^(m-2)))
= (1/4)^m
- 3(2/4)^m + 3(3/4)^m - 1
a(m,4) =
(-1)^m * (1 - 3 * 2^m + 3 * 3^m - 4^m)C
c
ąąÜĹvZˇéĆC
a(m,n) =
(-1)^m * °[k=1,n]{(-1)^(k-1) * (n-1)C(k-1) * k^m}C
ĹÍȢŠCĆ\zōܡBąęđwIA[@ĹmFľÜľĺ¤B
n = 1 ` 4 ÍĄÜĹĚvZć菧ˇéĚÍžçŠB
n-1 Ĺłľ˘ĆľÄC
a(m+1,n) =
(n-1) * a(m,n-1) - n * a(m,n)
= (n-1) *
(-1)^m * °[k=1,n-1]{(-1)^(k-1) * (n-2)C(k-1) * k^m} - n * a(m,n)C
a(m+1,n)/(-n)^(m+1)
- a(m,n)/(-n)^m
=
(n-1)/(-n) * °[k=1,n-1]{(-1)^(k-1) * (n-2)C(k-1) * (k/n)^m}Ca(n-2,n) = 0C
a(m,n)/(-n)^m
= (n-1)/(-n) * °[i=n-2,m-1]{°[k=1,n-1]{(-1)^(k-1) * (n-2)C(k-1) * (k/n)^i}}
= (n-1)/(-n)
* °[k=1,n-1]{(-1)^(k-1) * (n-2)C(k-1) * (k/n)^(n-2) * (1 - (k/n)^(m -(n-2)))/(1
- k/n)}
= (n-1) *
°[k=1,n-1]{(-1)^k * (n-2)C(k-1) * ((k/n)^(n-2) - (k/n)^m)/(n-k)}
=
°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * ((k/n)^(n-2) - (k/n)^m))}
=
°[k=1,n-1]{(-1)^(k-1) * (n-1)C(k-1) * (k/n)^m)}
+
°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * (k/n)^(n-2)}
ąąĹCćQÍC
°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * (k/n)^(n-2)}
=
°[k=0,n-1]{(-1)^k * nCk * k^(n-1)}/n^(n-1)
ĆŻCąĚŞqÍC
(1 - x)^n
= °[k=0,n]{(-1)^k * nCk * x^k)}
đ x Ĺ÷Şľ x đ|ŻéCx *
d/dxCđ n-1 ńsÁÄ x = 1 ƨ˘˝ŽĚ¤ż k = n 𢽎šB
k = n ŕüę˝SĚÍC(1 - x)^n ÉÎľÄ n-1 ńĚ÷ŞĹÍ 1 - x ŞcÁľܤĚĹCx = 1 Ĺ 0 šB
k = n ĚÍąĚěĹ (-1)^n * n^(n-1) ĆČéĚĹCÇC
°[k=0,n-1]{(-1)^k * nCk * k^(n-1)} + (-1)^n * n^(n-1) = 0C
°[k=0,n-1]{(-1)^k * nCk * k^(n-1)} = (-1)^(n-1) * n^(n-1)C
šBťąĹC
°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * (k/n)^(n-2)}
=°[k=0,n-1]{(-1)^k
* nCk * k^(n-1)}/n^(n-1)
=
(-1)^(n-1) * n^(n-1)/n^(n-1) = (-1)^(n-1) = (-1)^(n-1) * (n-1)C(n-1) * (n/n)^mC
a(m,n)/(-n)^m
=
°[k=1,n-1]{(-1)^(k-1) * (n-1)C(k-1) * (k/n)^m)}
+
°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * (k/n)^(n-2)}
=
°[k=1,n-1]{(-1)^(k-1) * (n-1)C(k-1) * (k/n)^m)}
+
(-1)^(n-1) * (n-1)C(n-1) * (n/n)^m
=
°[k=1,n]{(-1)^(k-1) * (n-1)C(k-1) * (k/n)^m)}C
a(m,n) =
(-1)^m * °[k=1,n]{(-1)^(k-1) * (n-1)C(k-1) * k^m)}
ĆČÁÄCʧľÜˇBąęĹCa(m,n) ĚęĘŽŞÜčÜľ˝BťąĹC
Sm =
°[n=1,m+1]{(-1)^m * °[k=1,n]{(-1)^(k-1) * (n-1)C(k-1) * k^m)}/(1 - r)^n}C
ĆČčܡBęÍÜÁ˝Ć͢ŚČPĹÍȢšËB
ȨCąĚŽđgÁÄĄńĚâčđđĆCr = 1/2C1/(1 - r) = 2CČĚĹC
S1 = -
1/(1 - r) + 1/(1 - r)^2
-> - 2
+ 2^2 = - 2 + 4 = 2C
S2 = 1/(1
- r) - 3/(1 - r)^2 + 2/(1 - r)^3
-> 2 -
3 * 2^2 + 2 * 2^3 = 2 - 12 + 16 = 6C
S3 = -
1/(1 - r) + 7/(1 - r)^2 - 12/(1 - r)^3 + 6/(1 - r)^4
-> - 2
+ 7 * 2^2 - 12 * 2^3 + 6 * 2^4 = - 2 + 28 - 96 + 96 = 26C
S4 = 1/(1
- r) - 15/(1 - r)^2 + 50/(1 - r)^3 - 60/(1 - r)^4 + 24/(1 - r)^5
-> 2 -
15 * 2^2 + 50 * 2^3 - 60 * 2^4 + 24 * 2^5= 2 - 60 + 400 - 960 + 768 = 150
ĆČčܡBRšŞCČOĚĘĆęvľÜˇB
(´z)
÷ŞđgÁ˝đ@ÍCĺwxĚmŻđgŚÎC
S0 =
°[k=1,]{r^k} = r/(1 - r)C
ŞCűŠźa 1 đŕżCąĚÍÍĹęlâÎűЎéąĆŠçCćčľ§ŠÂeŐɢŚéąĆšB
ąąĹÍCťęđgí¸ÉCZxĹÜĆßÄÝÜľ˝B
łŔĚ_ÍŔĚľ§Čč`ĆÜÁÄŽŹľ˝oÜŞ čC
[RuExk[CŞôľ˝ ÍÜžWrăĆvíęܡB
äXÍ˝Ěćl˝żĚbqĚ¨Š°ĹĺŞyđłšÄŕçÁĢéČCĆüßÄv˘ÜˇB
ȨCăLĚű@ĹÍęʮ𫺵˝čęĘĚlđßéĚÍďľť¤ĹˇB
˝Š¤Ü˘HvŞČ˘ŕĚŠČCĆŕv˘ÜˇB
ťĚăCęĘŽĚąođđl@ľÜľ˝B˝žC¤Ü˘ÁĢéĆ͢˘Ş˝˘ĚšŞB
NO3uNŤĚ¨śłńv 08/31 1413Ş@óM XV 9/27
325đ@NŤĚ¨śłń
âčP

ƨŤASŠç
đřĆAˇŞäÉČčܡB
![]()
![]()

ćÁÄA

âč2

ƨŤAâč1ĆŻlÉlŚÜˇB
![]()
![]()
![]()
![]()
ąąĹA
![]()
ƨŤÜˇB
![]()
![]()

ćÁÄA

ąĚlđmÁÄŽiAjÉăüľAvZľÜˇB

âč3

ƨŤÜˇB
![]()
![]()

![]()
![]()
![]()
ąąĹA
![]()
ƨŤÜˇB
![]()
![]()
![]()
![]()
ćÁÄA

ąĚlđmÁÄŽiBjÉăüľAvZľÜˇB

âč4

ƨŤÜˇB
![]()
![]()




ąąĹA
![]()
ƨŤÜˇB
犜ßA
![]()
đÓÜŚÄĚvZđľÜˇB
![]()
![]()
![]()
![]()
![]()
ćÁÄA

ÉA
![]()
ƨŤÜˇB
犜ßA
![]()
đÓÜŚÄĚvZđľÜˇ
![]()
![]()
![]()
![]()
![]()
ćÁÄA

ąĚlđmÁÄŽiCjÉăüľAvZľÜˇB

NO4ulcž¤v
09/02 1635Ş@óM XV 9/27
VBSCRIPTÉÄĘżľČ˘ĆąëÜĹvZľCđđß˝D

s1=0
s2=0
s3=0
s4=0
for j=1 to 1000
s1=s1+j/2^j
s2=s2+j*j/2^j
s3=s3+j*j*j/2^j
s4=s4+j*j*j*j/2^j
next
msgbox s1&chr(13)&s2&chr(13)&s3&chr(13)&s4
ťęźęŞaĚÉŔđßęÎć˘D
âPDPơéD
@ćŞa
@@rP^Q{Q^QQ{R^QR{EEE{^QEEE(1)
É¢ÄC
@@P^QErP^QQ{Q^QR{EEE{(|P)^Q{^Q{PEEE(2)
@(1)|(2)ćčC
@@P^QErP^Q{P^QQ{P^QR{EEE{P^Q|^Q{P
@@@@@@@@P^QE{P|(P^Q)}^(P|P^Q)|^Q{P
@@@@@@@@P|(P^Q)|^Q{P
@@rQ{P|(P^Q)}|^QEEE(3)
@ąąĹCńčĆPćčC
@@Q(P{P)bO{bP{bQ{EEE{bbQ{(|P)}^QO
@@OP^QQ^{(|P)}
@@O^QQ^(|P)¨Oi¨j
@ͳݤżĚ´ćčC
@@lim¨^QO
@(3)ŠçC
@@lim¨rlim¨[Q{P|(P^Q)}|^Q]QEEE()
âQDQơéD
@ćŞa
@@rPQ^Q{QQ^QQ{RQ^QR{SQ^QS{EEE{Q^QEEE(1)
É¢ÄC
@@P^QErPQ^QQ{QQ^QR{RQ^QS{EEE{(|P)Q^Q{Q^Q{PEEE(2)
@(1)|(2)ćčC
@@P^QErP^Q{R^QQ{T^QR{V^QS{EEE{(Q|P)^Q|Q^Q{PEEE(3)
@@rP{R^Q{T^QQ{V^QR{EEE{(Q|P)^Q|P|Q^QEEE(4)
@(4)|(3)ćčC
@@P^QErP{Q^Q{Q^QQ{Q^QR{EEE{Q^Q|P
@@@@@@@@@@{(|Q|Q{P)^Q{Q^Q{P
@@@@@@@@P{P{P^Q{P^QQ{EEE{P^Q|Q{{Q(|Q|Q{P){Q)^Q{P
@@@@@@@@P{{P|(P^Q)|P}^(P|P^Q){(|Q|S{Q)^Q{P
@@@@@@@@P{Q{P|(P^Q)|P}{(|Q|S{Q)^Q{P
@@@@@@@@R|(P^Q)|Q{(|Q|S{Q)^Q{P
@@rU|(P^Q)|R{(|Q|S{Q)^QEEE(5)
@ąąĹCńčĆQćčC
@@QbO{bP{bQ{bR{EEE{bbR{(|P)(|Q)}^UO
@@OP^QU^{(|P)(|Q)}
@@Ob(|Q|S{Q)^QbUb(|Q|S{Q)^{(|P)(|Q)}b
@@@@@@@@@@@@@@@Ub(|P|S^{Q^Q)^{(P|P^)(|Q)}b¨Oi¨j
@ͳݤżĚ´ćčC
@@lim¨(|Q|S{Q)^QO
@(5)ŠçC
@@lim¨rlim¨{U|(P^Q)|R{(|Q|S{Q)^Q}UEEE()
âRD
@âPCQĆŻlÉClim¨(ĚQŽ)^Qlim¨(ĚRŽ)^QOĹ éD
@ąąĹCq()(ĚŽ)^Qilim¨q()OjơéD
@RơéD
@ćŞa
@@rPR^Q{QR^QQ{RR^QR{SR^QS{TR^QT{EEE{R^QEEE(1)
É¢ÄC
@@P^QErPR^QQ{QR^QR{RR^QS{SR^QT{EEE{(|P)R^Q{R^Q{P
@@@@@@@@@@@@@@@EEE(2)
@(1)|(2)ćčC
@@P^QErP^Q{V^QQ{PX^QR{RV^QS{UP^QT{EEE{(RQ|R{P)^Q
@@@@@@@@@@@@@@@|R^Q{PEEE(3)
@@rP{V^Q{PX^QQ{RV^QR{UP^QS{EEE
@@@@@@@@@@@@{(RQ|R{P)^Q|P|R^QEEE(4)
@(4)|(3)ćčC
@@P^QErP{U^Q{PQ^QQ{PW^QR{QS^QS{EEE
@@@@@@@@@@{[(RQ|R{P)|{R(|P)Q|R(|P){P}]^Q|P{qP()
@@@@@@@@P{R{P{Q^Q{R^QQ{S^QS{EEE{(|P)^Q|Q}{qP()
@@rQ{U{P{Q^Q{R^QQ{S^QR{EEE{(|P)^Q|Q}{QqP()EEE(5)
@@P^QErP{U{P^Q{Q^QQ{R^QR{S^QS{EEE{(|P)^Q|P}{qP()
@@@@@@@@@@@@@@@EEE(6)
@(5)|(6)ćčC
@@P^QErP{U{P{P^Q{P^QQ{P^QR{EEE{P^Q|Q
@@@@@@@@@@@@@@@|(|P)^Q|P}{qP()
@@@@@@@P{UE{P|(P^Q)|P}^(P|P^Q){qQ()
@@@@@@@P{PQ{P|(P^Q)|P}{qQ()
@@@@@@@PR|PQ(P^Q)|P{qQ()
@@rQU|QS(P^Q)|P{QqQ()¨QUi¨j
âSDđ\ŞĺŤČłŽĆˇéD
@ćŞa
@@rPS^Q{QS^QQ{RS^QR{SS^QS{TS^QT{US^QU{EEE{S^QEEE(1)
É¢ÄC
@@P^QErPS^QQ{QS^QR{RS^QS{SS^QT{EEE{(|P)S^Q{S^Q{P
@@@@@@@@@@@@@@@EEE(2)
@(1)|(2)ćčC
@@P^QErP^Q{PT^QQ{UT^QR{PVT^QS{RUX^QT{EEE
@@@@@@@@@@@@@@@{(SR|UQ{S|P)^Q|S^Q{PEEE(3)
@@rP{PT^Q{UT^QQ{PVT^QR{RUX^QS{UVP^QT{EEE
@@@@@@@@@@@@{(SR|UQ{S[P)^Q|P|S^QEEE(4)
@(4)|(3)ćčC
@@P^QErP{PS^Q{TO^QQ{PPO^QR{PXS^QS{ROQ^QT{EEE
@@@@@@@@{[(SR|UQ{S|P)|{S(|P)R|U(|P)Q{S(|P)|P}]^Q|P
@@@@@@@@{qP()
@@@@@@@@@P{V{QT^Q{TT^QQ{XV^QR{PTP^QS{EEE
@@@@@@@@@@{(UQ|PQ{V)^Q|Q{qP()EEE(5)
@@rQEW{QT{TT^Q{XV^QQ{PTP^QR{EEE
@@@@@@@@@@@@{(UQ|PQ{V)^Q|R{QqP()EEE(6)
@(6)|(5)ćčC
@@P^QErRR{RO^Q{SQ^QQ{TS^QR{EEE
@@@@@@@@@@@@@@@{[{(UQ|PQ{V)|{U(|P)Q|PQ(|P){V}]^Q|R{qQ()
@@@@@@@@RR{PT{QP^Q{QV^QQ{EEE{(U|X)^Q|S{qR()
@@rQESW{QP{QV^Q{EEE{(U|X)^Q|T{QqR()
@@@@@XU{R{V{X^Q{EEE{(Q|R)^Q|T}{QqR()EEE(7)
@@P^QErSW{R{V^Q{X^QQ{EEE{(Q|R)^Q|S}{qR()EEE(8)
@(7)|(8)ćčC
@@P^QErSW{R(V{Q^Q{Q^QQ{EEE{Q^Q|S){qS()
@@@@@@@@SW{QP{R(P{P^Q{EEEP^Q|T){qS()
@@@@@@@@UX{RE{P|(P^Q)|S}^(P|P^Q){qS()
@@@@@@@@UX{U{P|(P^Q)|S}{qS()
@@@@@@@@VT|U(P^Q)|S{qS()
@@rPTO|PQ(P^Q)|S{QqS()¨PTOi¨j
NO5u˝Ó°¸ĎÝv
09/02 1723Ş@óM XV 9/27
ĄńÍĹĚQâŞđŻ˝Ćv˘ÜˇĚĹťąÜĹđÎ Orz
(1)
1/2+2/2^2+3/2^3+4/2^4+c
+1/2^2+1/2^3+cEEE(1/2)*S
+1/2^3+1/2^4+cEEE(1/2^2)*S
+1/2^4+cEEE(1/2^3)*S
c
=S*(S+1)
=1*2=2
(2)
1/2+2^2/2^2+3^3/2^3+c
1+1/2+1/2^2+c=1+S=2
+2*(1/2++1/2^2+cEEES
+2*(1/2^2+1/2^3+cEEES/2
+2*(1/2^3+1/2^4+cEEES/2^2
=S*(1+1+1/2+1/2^2+c)
=S*(2+S)
=1*3=3
(3),(4) ÍA¨ťçA4,5 ÉČé̞뤯ÇíŠç¸c^^;
ÄĚć¤ÉÎÝŠĆvÁÄÜľ˝ŞcłÖWĚć¤ĹˇË c^^
ĚŹęFcOČŞçiQjÍłđÉÁÄEEE
NO6uɢÎčZ12v 09/09 2341Ş@óM
XV 9/27
ő
@@a=°k=1`1/2k=1/2+1/22+1/23+1/24+1/25+EEEE=(1/2)/(1-1/2)=1(äĚöŽ)
A@np-(n-1)p=
np-°i=0`pop C p -i (-1) i-1npp=-°i=1`pop C p -i (-1) inp-1pińčjH
â1@ąĚâčÍ渎Ď`ĹĘÉlŚÜľ˝
°k=1`k/2k= 1/2+2/22+3/23+4/24+5/25+EEEE
@@@@@= 1/2+1/22+1/23+1/24+1/25+EEEE
+ 1/22+1/23+1/24+1/25+EEEE
+@
1/23+1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+
+1/25+EEEE
E
E
@@@@@= 1/2+1/22+1/23+1/24+1/25+EEEE
+ 1/2(1/2+1/22+1/23+1/24+EEEE)
+ 1/22(1/2+1/22+1/23+EEEE)
+
1/23(1/2+1/22+EEEE)
+
1/24(1/2+EEEE)
E
E
°k=1`1/2k=1EEEő@ćč
=a+(1/2+2/22+3/23+4/24+5/25+EEEE)a=a+a2=2EEEń
ˇąľAđčɢŠŕľęÜšńŞAuEEEvđgíȢĹĆ
°k=1`k/2k=(°k=1`1/2k)(1+(°k=1`1/2k )(°k=1`1/2k))=2ĆČčܡBiÖŤj
â2@â1ĆŻlÉŽĎ`ĹlŚéĆĚć¤ÉČčܡB
°k=1`k2/2k=
1/2+22/22+32/23+42/24+52/25+EEEE
@@@@@= 1/2+1/22+1/23+1/24+1/25+EEEE
+ 1/22+1/23+1/24+1/25+EEEE
+ 1/22+1/23+1/24+1/25+EEEE
+ 1/22+1/23+1/24+1/25+EEEE
+@
1/23+1/24+1/25+EEEE
+@
1/23+1/24+1/25+EEEE
+@
1/23+1/24+1/25+EEEE
+@
1/23+1/24+1/25+EEEE
+@
1/23+1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
E
E
@@@@@=
a(12-0)+a(22-1)E1/2+ a(32-22)E1/22+
a(42-32)E1/23+ a(52-42)E1/24+EEEE
@@@@@= 1+(22-1)E1/2+(32-22)E1/22+(42-32)E1/23+(52-42)E1/24+EEEE
ąąĹn2-(n-1)2ĚńđlŚéĆ
őAŠç2n-1ĆČéĚĹn=1ŠçlŚéĆďńĆČčܡB
ćÁÄ
°k=1`k2/2k= (1/2)0+3(1/2)1+5(1/2)2+7(1/2)3+9(1/2)
4+11(1/2)5+EEEE=°k=1`(2k-1)/2(k-1)
°k=1`k2/2k=°k=1`2k/2(k-1) -°k=1`1/2(k-1) =4°k=1`k/2k –2(°k=1`1/2k)
°k=1`k/2k=2EEEâ1ćč
°k=1`1/2k=1EEEő@ćč
°k=1`k2/2k=4°k=1`k/2k –2(°k=1`1/2k) =4~2|2~16EEEEEń@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
â3@â2ÔĆŻlÉ\ťˇéĆĚć¤ÉČčܡB
°k=1`k3/2k@= a(13-0)+a(23-1)E1/2+ a(33-23)E1/22+ a(43-33)E1/23+ a(53-43)E1/24+EEEE
ąąĹn3-(n-1)3ĚńÍőAŠç
3n2-3n+1
ćÁÄ
°k=1`k3/2k@=3°k=1`k2/2k-1|3°k=1`k/2k-1+°k=1`1/2k-1
°k=1`k2/2k=6EEEâ2ćč
°k=1`k/2k=2EEEâ1ćč
°k=1`1/2k=1EEEőćč
°k=1`k3/2k@=2~i3~6|3~2+1j26EEEEEń
â4@â3ÔĆŻlÉ\ťˇéĆĚć¤ÉČčܡB
°k=1`k4/2k@= a(14-0)+a(24-1)E1/2+ a(34-24)E1/22+ a(44-34)E1/23+ a(54-44)E1/24+EEEE
ąąĹn4-(n-1)4Íâ3ĆŻlÉ
4n3-6n2+4n-1
ćÁÄ
°k=1`k4/2k@=4°k=1`k3/2k-1|6°k=1`k2/2k-1+4°k=1`k/2k-1|°k=1`1/2k-1
°k=1`k3/2k=26EEEâ3ćč
°k=1`k2/2k=6EEEâ2ćč
°k=1`k/2k=2EEEâ1ćč
°k=1`1/2k=1EEEőćč
°k=1`k4/2k@=2~i4~26|6~6+4~2|1j150EEEEEń
------------------------------------------------------------
Ćč Ś¸1ńÚĚńđłšÄ¸ŤÜˇ
ÔÉŚÎ
°k=1`kn/2k
łçÉ
°k=1`kn/mk
đlŚÄÝ˝˘Ćv˘Üˇ
------------------------------------------------------------