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第一問　等脚台形に甲乙の 2 円を入れる。その隙間に順次，丙円，丁円，戊円...を入れてい
く。甲円の径と最後に入れた円（黒円と呼ぼう）の径が分かっているときに，乙円から黒円ま
で何個の円が入ったか。

この問題は見た目は違うが，90度時計回りに回転すると本質的には算額（その36）と同じもの
である。

甲円，乙円，丙円，丁円，戊円， ... 黒円の半径を  とおく。

算法助術の公式41により  である。 この式は，算法助術の公式40
 を適用して導かれる。

両辺を  で割れば，  である。

黒円  まで式を書き下す。

ここで，具体例も併せて考えるために，等脚台形内に甲円，乙円，丙円，丁円，戊円の 5 個の
円が入っている場合を考える。

include("julia-source.txt")
using SymPy
@syms n, r1, r2, r3, r4, r5
eq3 = 1/√r3 ⩵ 1/√r2 + 1/√r1
eq4 = 1/√r4 ⩵ 1/√r3 + 1/√r1
eq5 = 1/√r5 ⩵ 1/√r4 + 1/√r1;
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 が既知なので，eq3, eq4, eq5 の連立方程式を一度に解いて  を求めることも
できる。

res = solve((eq3, eq4, eq5), (r2, r3, r4))[1]

(r1^3*r5/((sqrt(r1) - sqrt(r1*r5/(-2*sqrt(r1)*sqrt(r5) + r1 + r5)))^2*(sqrt(r1) - sqrt(r1^2*r5/((sqrt(r1) - sqrt(r1*r5/(-2*sqrt(r1)*sqrt(r5) + r1 + r5)))^2*(-2*sqrt(r1)*sqrt(r5) + r1 + r5))))^2*(-2*sqrt(r1)*sqrt(r5) + r1 + r5)), r1^2*r5/((sqrt(r1) - sqrt(r1*r5/(-2*sqrt(r1)*sqrt(r5) + r1 + r5)))^2*(-2*sqrt(r1)*sqrt(r5) + r1 + r5)), r1*r5/(sqrt(r1) - sqrt(r5))^2)

 は  のみで決まる。

# r2
res[1]

# r3
res[2]

# r4
res[3]

それぞれの最後から 2 番目の円以外の式が複雑になるので，逆順に（eq5, eq4, eq2 の順に）
解いて  の順に求めてもよい。

ans_r4 = solve(eq5, r4)[1]
@show(ans_r4)

ans_r4 = r1*r5/(sqrt(r1) - sqrt(r5))^2
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ans_r3 = solve(eq4, r3)[1]
@show(ans_r3)

ans_r3 = r1*r4/(sqrt(r1) - sqrt(r4))^2

ans_r2 = solve(eq3, r2)[1]
@show(ans_r2)

ans_r2 = r1*r3/(sqrt(r1) - sqrt(r3))^2

 の場合を考える。

ans_r4(r1 => 225, r5 => 10).evalf()

ans_r3(r4 => ans_r4)(r1 => 225, r5 => 10).evalf()

ans_r2(r3 => ans_r3)(r4 => ans_r4)(r1 => 225, r5 => 10).evalf()

これで言えることは，「乙円  の大きさは，  つまり甲円と黒円の大きさにより，自動
的に決定される」ということである。  がこの値と異なれば，隣同士の円が外接しない（隙
間ができたり重なったりする）。

術で「甲円の径と最後に入れた円の径が分かっているとき」という条件しかない（乙円につい
ての記述がない）のは，「必要がない」のではなく，「（誤差範囲内で）自動的に決まってし
まう」からである。

さて，本筋に戻ろう。  本の関係式において，辺々加えると対応する項が打ち消し合うも
のがあり，以下のように簡単な式になる。
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@syms n, r1, r2, rn
eq = 1/sqrt(rn) ⩵ 1/sqrt(r2) + (n - 2)/sqrt(r1)

 が既知なので，この関係式を解いて  を求める。

ans_n = solve(eq, n)[1]
@show(ans_n)

ans_n = sqrt(r1)/sqrt(rn) - sqrt(r1)/sqrt(r2) + 2

つまり，  である。 繰り返すが，  は何でもよいのではなく，

により，自動的に決まるのである。

上の数値例でいえば，「  は正確に 5」である。

ans_n(r1 => 225, rn => 10, r2 => 74.0253073352042).evalf()

時岡はここで，

 にガウス記号をとると， 

と言い始め，

 となるのは，  i.e.  のとき

としている。

一見正しそうであるが，  が 2 以上，3 未満というのは少し考えてもおかしい。 制限が
強すぎるし，何度も書いているが「  は何でもよいのではなく，  により，自動的に決
まるのである」。 「  が取りうる範囲」などない。

上の数値例でも，  である。
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# sqrt(r1/r2)
sqrt(225/74.0253073352042)

1.743416490252569

そもそも，円の個数  は計算式で計算した数値の床(floor)を取るのであって，途中の項の床を
取って和（差）を計算するものではない。

結論として，時岡は，「甲径/乙径の正の平方根が 2 以上 3 未満のときは，円の個数は
」としている。

これによれば，上の数値例では「甲径/乙径の正の平方根が 2 以上 3 未満のとき」に該当しな
いので答えがないことになる。

補足として 1. 「甲径/乙径の正の平方根が 2 未満のときは，円の個数は 」
2. 「甲径/乙径の正の平方根が 3 以上 4 未満のときは，円の個数は 」 とし
ている。

 なので，前者が該当し，  となるが，不適切解である。

(floor(sqrt(r1/r5)) - 1)(r1 => 225, r5 => 10)

なお，術は無条件に「 」なので 4 になるが，これも不適切解である。

sqrt(225/10), floor(sqrt(225/10))

(4.743416490252569, 4.0)
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function func(r1, r5)
    r4 = r1*r5/(sqrt(r1) - sqrt(r5))^2
    r3 = r1*r4/(sqrt(r1) - sqrt(r4))^2
    r2 = r1*r3/(sqrt(r1) - sqrt(r3))^2
    n = sqrt(r1)/sqrt(r5) - sqrt(r1)/sqrt(r2) + 2
    @printf("r1 = %g, r2 = %g, r3 = %g, r4 = %g, r5 = %g\n", r1, r2, r3, r4, r5)
    if 2 <= sqrt(r1/r2) < 3
        n2 = floor(sqrt(r1/r5))
    elseif sqrt(r1/r2) < 2
        n2 = floor(sqrt(r1/r5)) - 1
    elseif 3 <= sqrt(r1/r2) < 4
        n2 = floor(sqrt(r1/r5)) + 1
    else
        n2 = missing
    end
    @printf("n = %g,  sqrt(r1/r2) = %g, 時岡のn = %g\n", n, sqrt(r1/r2), n2)
end;
func(225, 10)

r1 = 225, r2 = 74.0253, r3 = 29.895, r4 = 16.0563, r5 = 10
n = 5,  sqrt(r1/r2) = 1.74342, 時岡のn = 3

func(225, 15)

r1 = 225, r2 = 295.237, r3 = 64.1379, r4 = 27.2594, r5 = 15
n = 5,  sqrt(r1/r2) = 0.872983, 時岡のn = 2

 のとき，時岡の式では  に該当し，  になってしま
う。これも不適切解である（正しくは ）。

func(225, 5)

r1 = 225, r2 = 16.3627, r3 = 10.1501, r4 = 6.90532, r5 = 5
n = 5,  sqrt(r1/r2) = 3.7082, 時岡のn = 7

術では一律に，「円の個数は 」なのでそれぞれ ，  になってしまう。

sqrt(225/10), floor(sqrt(225/10))

(4.743416490252569, 4.0)
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sqrt(225/5), floor(sqrt(225/5))

(6.708203932499369, 6.0)

ちょっと考えてみよう。「甲円と黒円の大きさが与えられる」という状況で，乙円の大きさを
適当に決めて丙円，丁円を順次描いていくとき，乙円の大きさがいい加減に決められたもので
あれば，最後の黒円は隙間にピッタリ入る保証はない。また，甲円と乙円を先に描き，まず黒
円を先に描いてから逆順で円を描いていくと，最後に丙円が隙間にぴったり入る保証もない。

つまり，先に求めた  の式の中に乙円の大きさ  が入っているのはそ

のためである。計算結果で得られた  を整数にするために floor をとるのは，便宜的なもので
ある（誤差の影響を除くのならば，切り捨てではなく，四捨五入をすべきである）。すべての
円が外接すべきものはすべて外接するためには，  がきっちり決まっており，計算す
ると整数の  が求まるのだ。  のどれか一つでも不正確，不適切な数であるとき
は，結果の  の floor を取って解を得たつもりになっても，その条件では所与の図は描けな
い。

問では，「隙間に順次，丙円，丁円，戊円...を入れていく」と描いてあるだけである。途中の
円は隣同士互いに接し，また台形の斜辺にも接するように描かれるのであろうが，最後に描か
れる円が一つ前の円とは接するのであろうが，台形の斜辺にも接するかどうかは記載がないと
いうのが逃げ道であろう。

別法として，甲円と黒円の半径が与えられたとき，黒円をスタートとして，一つ前の円の半径
を数値計算するプログラムを書くという方法がある。 甲円の半径と中心座標を  黒
円の半径と中心座標を  とすれば， 黒円より一つ前の円の半径は，

 中心座標は  である。

# 甲円の半径を r1 として，半径 rn の円の次に大きい円の半径を求める関数
nextcircle(rn, r1) = r1*rn/(r1 - 2sqrt(r1*rn) + rn)

nextcircle (generic function with 1 method)

最初にあげた数値例（甲円の半径 = 225, 黒円の半径 = 10）では以下のようになり，半径が
74.0253 の円は乙円にあたる。 半径が 407.1159688 の円は甲円より大きくなり，台形の上底
と下底の大小関係が逆転する。 その次の 半径が 3417.6299 の円は更に大きいが，もはやこれ
らの円は台形の中に存在しない。 その後は この2つの円が交互に計算されるようになる。
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r1 = BigFloat(225)
r = 10
for i = 1:10
    println(i, " ", r)
    r = nextcircle(r1, r)
end

1 10
2 16.05632757298789842963602626823598704220811188543974333829922287860465385847815
3 29.89503240680003534900951434619187734264835482275834248723924485396640611296723
4 74.02530733520421479998770604925242815243950154805796474286116503102882709599109
5 407.1159688154940638200476347921500601430248254716706611246216118944379877947086
6 3417.6299364909248392794025139936680082085597752356170865030526205080009968653
7 407.1159688154940638200476347921500601430248254716706611246216118944379877946909
8 3417.629936490924839279402513993668008208559775235617086503052620508000996865123
9 407.1159688154940638200476347921500601430248254716706611246216118944379877946997
10 3417.629936490924839279402513993668008208559775235617086503052620508000996865229

甲円の半径 = 225, 黒円の半径 = 1 のとき，乙円までの半径は以下のようになる。 乙円は黒円
から数えて 15 番目で，その半径は甲円の半径と同じになる。

r1 = BigFloat(225)
r = 1
for i = 1:16
    println(i, " ", r)
    r = nextcircle(r1, r)
end



1 1
2 1.147959183673469387755102040816326530612244897959183673469387755102040816326527
3 1.331360946745562130177514792899408284023668639053254437869822485207100591715981
4 1.5625
5 1.859504132231404958677685950413223140495867768595041322314049586776859504132237
6 2.25
7 2.777777777777777777777777777777777777777777777777777777777777777777777777777774
8 3.515625
9 4.59183673469387755102040816326530612244897959183673469387755102040816326530611
10 6.25
11 9.0
12 14.0625
13 25.0
14 56.25
15 225.0
16 Inf

たとえば，  の場合も同じである。

r1 = BigFloat(225)
r = 9
for i = 1:5
    println(i, " ", r)
    r = nextcircle(r1, r)
end

1 9
2 14.0625
3 25.0
4 56.25
5 225.0

以下のプログラムでは，乙円から黒円までの個数を数えているので，甲円も数えるなら， +1
する。

= 225,  rn = 9r1



function draw(R, r, maxn, more)
    pyplot(size=(500, 500), grid=false, aspectratio=1, label="", fontfamily="IPAMincho")
    plot()
    println("個数 = ", floor(Int, sqrt(R/r)))
    circle(0, R, R, :blue)
    x = 2*sqrt(R)*sqrt(r) # x1
    for i = 1:maxn
        @printf("i = %d, x = %g, r = %g\n", i, x, r)
        circle(x, r, r, :red)
        r = nextcircle(r, R)
        x = 2sqrt(r1*r)
        #round(r, digits=10) > R && break
    end
    if more
        vline!([0], color=:black, lw=0.5)
    else
        plot!(showaxis=false)
    end
    hline!([0], color=:black, lw=0.5)
end;

draw(225, 10, 8, true)
savefig("/Users/aoki/Downloads/fig1.png");

個数 = 4
i = 1, x = 94.8683, r = 10
i = 2, x = 120.211, r = 16.0563
i = 3, x = 164.029, r = 29.895
i = 4, x = 258.114, r = 74.0253
i = 5, x = 605.313, r = 407.116
i = 6, x = 1753.81, r = 3417.63
i = 7, x = 605.313, r = 407.116
i = 8, x = 1753.81, r = 3417.63



draw(225, 1, 15, true)
savefig("/Users/aoki/Downloads/fig1.png");

個数 = 15
i = 1, x = 30, r = 1
i = 2, x = 32.1429, r = 1.14796
i = 3, x = 34.6154, r = 1.33136
i = 4, x = 37.5, r = 1.5625
i = 5, x = 40.9091, r = 1.8595
i = 6, x = 45, r = 2.25
i = 7, x = 50, r = 2.77778
i = 8, x = 56.25, r = 3.51563
i = 9, x = 64.2857, r = 4.59184
i = 10, x = 75, r = 6.25
i = 11, x = 90, r = 9
i = 12, x = 112.5, r = 14.0625
i = 13, x = 150, r = 25
i = 14, x = 225, r = 56.25
i = 15, x = 450, r = 225



draw(225, 9, 5, true)
savefig("/Users/aoki/Downloads/fig3.png");

個数 = 5
i = 1, x = 90, r = 9
i = 2, x = 112.5, r = 14.0625
i = 3, x = 150, r = 25
i = 4, x = 225, r = 56.25
i = 5, x = 450, r = 225


