平成13年12月1日

[流れ星]

        第88回数学的な応募問題

          <解答募集期間:12月1日〜12月15日>

[複素数の平方根]

   

今、太郎さんは学校で生徒に複素数平面を教えています。平方根の性質を拡張して次のことが成り立ちます。
(1)a、bがa>0、b<0のとき、

    が成立する。

(2)a>0のとき、

    が成立する。

(3)z=aの解は、z=±a である。

 

 また、複素数zをa+biで表して、a、bがともの整数のとき、zを複素整数という。ここで、問題です。

  (もちろん、iは虚数単位を表している。)

問題1:=48+14i のとき、複素数zを求めよ。

問題2:上の問題を2重根号のはずし方を利用して、解いてください。

問題3:z=a+biのとき、複素数zをa、bで表してください。(ただし、a、bは実数とする)

問題4:z=a+biで、b=2002のとき、複素整数zを求めてください。

 

皆さん、考え方がわかったら、全部でなくていいですから、とペンネームを添えて、メールで送ってください。待っています。

    <自宅>  mizuryu@aqua.ocn.ne.jp