˝ŹQVNWQú
[ŹęŻ]
@@@@@ć324ńwIČĺâč
@@@@@@đĺWúÔF82ú`830ú
m~ÉOÚˇé˝p`n
ú{Ěw@˝čđŻÜˇŠuşviXkoĹjđÇńŢÄAĚâčđlŚÜľ˝B
źaĚ~ÉOÚˇé˝p`đ`P`Q`REEE`ĆľA}Ěć¤ÉÚ_đaPCaQCaRCEEECaơéB
âPFRĚOp`ĚĆŤAÚü̡łđ`PaPC`QaQC`Ra3ĆľÄAđ,,Ĺ\šB
âQFSĚlp`ĚĆŤAÚü̡łđ`PaPC`QaQC`Ra3C`SaSĆľÄAđCCAĹ\šB
âRFTĚÜp`ĚĆŤAÚü̡łđ`PaPC`QaQC`Ra3C`SaSC`TaT
ĆľÄAđßéűöŽđěęB
@
QlśŁFú{Ěw@˝čđŻÜˇŠuşviXkoĹj_E\RtXL[A[ěpr¤
Ql@âQAâRÍ]ËăĚaZuZ@pvˇJěO {/R{ęO Ňi1841NjBęĘIČđ@Íuô˝wĺŤTiS8ŞjÉ˘Ä éť¤ĹˇB
NO1uuchinyanv
08/02 1614Ş@óM
uuchinyanv
08/03 1356Ş@óM
uuchinyanv
08/05 1156Ş@óM XV 8/30
ō鞯ęĘIÉlŚÄÝÜľĺ¤B
~ĚSđ OCźađ rCk = 1, 2, c i ĆľÄCAkBk = akCSp/2
= ÚAkOBk = żkCƾܡB
ˇéĆCtanżk = ak/rCSpĚa =
2ż1 + 2ż2 + c + 2żi = 2ÎnCż1 + ż2 + c + żi = ÎnC
˝žľ n ͳ̎CšBn đąüľÄS O ĚńčđĄńńÁÄÂśéŕĚŕÜßĢܡB
ąĚâčĚ˝p`ÍĘíĚĘ˝p`Ĺą¤ľ˝ĎĽI˝p`ÍÎŰɾĢȢć¤ÉŠŚÜˇŞC
ăĹŚˇć¤ÉąęŕOľČ˘űŞ_IÉÍXbLˇéć¤ĹˇB
Ü˝CłˇŞÉC0 < Sp = 2żk
< ÎC0 < żk < Î/2CơéĚŞŠRĹľĺ¤B
łÄCąĚđĚşĹCCtan(ż1 + ż2 + c + żi) = tan(În) = 0CÉČčܡB
ąęćčCśÓĚ tan(ż1 + ż2 + c + żi) đ tan ĚÁ@čđgÁÄWJľ
tanż1Ctanż2CcCtanżi Ĺ\ľÄ a1/rCa2/rCcCai/r đăüľŽˇęÎC
r ĚűöŽCČşĚáŠçžçŠĹˇŞCr Ě i-1 űöŽCŞžçęܡB
ťąĹCąĚűöŽđđŻÎCđŻęÎ (^^;Cr ŞßçęܡB
ČşCďĚIÉâÁÄÝÜľĺ¤B
âPF
i = 3C
A1B1 = aCA2B2 = bCA3B3 = cCÚA1OB1 = żCÚA2OB2 = ŔCÚA3OB3 = ÁCƾܡB
tanż = a/rCtanŔ = b/rCtanÁ = c/rC
tan(ż+Ŕ) = (tanż + tanŔ)/(1 - tanżtanŔ) = (a/r + b/r)/(1 - (a/r)(b/r)) = (a + b)r/(r^2 - ab)C
tan(ż+Ŕ+Á)
= (tan(ż+Ŕ) + tanÁ)/(1 - tan(ż+Ŕ)tanÁ)
= ((a +
b)r/(r^2 - ab) + c/r)/(1 - ((a + b)r/(r^2 - ab))(c/r))
= ((a +
b)r^2 + c(r^2 - ab))/((r^2 - ab)r - (a + b)cr)
= ((a + b
+ c)r^2 - abc)/(r^3 - (ab + bc + ca)r)
tan(ż+Ŕ+Á)
= 0 ćčC
(a + b +
c)r^2 - abc = 0C
r = ă(abc/(a + b + c))C
ÉČčܡB
(Ęđ)
i = 3CÂÜčCOp`ĚęÍCĘĎoRĹćčeŐÉßçęܡB
A1A2 = a +
bCA2A3 = b + cCA3A1 = c + aCČĚĹCs = (A1A2 + A2A3 + A3A1)/2
= a + b + cCćčC
˘A1A2A3 = ˘OA1A2 + ˘OA2A3
+ ˘OA3A1 = (A1A2 + A2A3 + A3A1)r/2 = (a + b + c)rC
ęűĹCwĚöŽćčC
˘A1A2A3 = ă(s(s - (a + b))(s - (b + c))(s -
(c + a))) = ă(abc(a + b + c))C
ČĚĹC
(a + b + c)r
= ă(abc(a + b + c))C
r = ă(abc/(a + b + c))C
ÉČčܡB
âQF
i = 4C
A1B1 = aCA2B2 = bCA3B3 = cCA4B4 = dC
ÚA1OB1 = żCÚA2OB2 = ŔCÚA3OB3 = ÁCÚA4OB4 = ÂCƾܡB
tanż = a/rCtanŔ = b/rCtanÁ = c/rCtan = d/rC
tan(ż+Ŕ) = (a + b)r/(r^2 - ab)Ctan(Á+Â) = (c +
d)r/(r^2 - cd)C
tan(ż+Ŕ+Á+Â) = (tan(ż+Ŕ) + tan(Á+Â))/(1 - tan(ż+Ŕ)tan(Á+Â)) = 0C
tan(ż+Ŕ) + tan(Á+Â) = 0C
(a +
b)r/(r^2 - ab) + (c + d)r/(r^2 - cd) = 0C
r((a + b +
c + d)r^2 - (abc + bcd + cda + dab)) = 0C
r = ă((abc + bcd + cda + dab)/(a + b + c + d))C
ÉČčܡB
âRF
i = 5C
A1B1 = aCA2B2 = bCA3B3 = cCA4B4 = dCA5B5 = eC
ÚA1OB1 = żCÚA2OB2 = ŔCÚA3OB3 = ÁCÚA4OB4 = ÂCÚA5OB5 = ĂCƾܡB
tanż = a/rCtanŔ = b/rCtanÁ = c/rCtan = d/rCtanĂ = e/rC
tan(ż+Ŕ+Á)
= ((a + b + c)r^2 - abc)/(r^3 - (ab + bc + ca)r) tan(Â+Ă) = (d + e)r/(r^2 - de)C
tan(ż+Ŕ+Á+Â+Ă) = (tan(ż+Ŕ+Á) + tan(Â+Ă))/(1 - tan(ż+Ŕ+Á)tan(Â+Ă)) = 0C
tan(ż+Ŕ+Á)
+ tan(Â+Ă) = 0C
((a + b +
c)r^2 - abc)/(r^3 - (ab + bc + ca)r) + (d + e)r/(r^2 - de) = 0C
((a + b +
c)r^2 - abc)(r^2 - de) + (d + e)r(r^3 - (ab + bc + ca)r) = 0C
(a + b + c
+ d + e)r^4 - (abc + abd + abe + acd + ace + ade + bcd + bce + bde + cde)r^2 +
abcde = 0C
ÉČčܡB
(żĺÁĆžŻl@)
ąęÍCr^2 ĚQűöŽČĚĹđąĆŞĹŤCr > 0 ĚđÍęĘÉń čܡB
ľŠľCąęçŞ}`IÉǤ˘¤ŕĚŠCąĚâčĹťĄ éŕĚŠCÍÜ˝ĘĚbšB
áŚÎCa = b = c = d = e = 1 ĚęÍCęÓ̡łŞ 2 ĚÓÜp`šB
ťľÄCĘĚĘ˝p`ČçÎCż = Ŕ = Á =  = Ă = Î/5 = 36ĹCąęÍłÜp`šB
ęűĹCr ĚűöŽÍC5r^4 - 10r^2 + 1 = 0CĹCr = ă(1 } 2/ă5)CšB
r = ă(1 + 2/ă5) > 1 ĚĆŤÍC
tanż = 1/r = ă(5 - 2ă5) < 1Ccosż = (ă5 + 1)/4CĹCż = 36CłÜp`CšB
r = ă(1 - 2/ă5) < 1 ĚĆŤÍC
tanż = 1/r = ă(5 + 2ă5) > 1Ccosż = (ă5 - 1)/4CĹCż > 45ĆďČđšB
ąęÍC(cos(ż/2))^2 = (1 + cosż)/2 = (3 + ă5)/8 = ((ă5 + 1)/4)^2Ccos(ż/2)
= (ă5 + 1)/4C
ż/2 = 36Cż = 72CĆČčCż = Ŕ = Á =  = Ă = 72= 2Î/5CšB
ÂÜčCĹÉÓľ˝ n = 2 ĚęCS O đ 2 ńńÁÄÂśé˝p`CšB
ą¤ľ˝ąĆđŕĆÉ}`IČ`óđ˘ˇéĆCłÜp`ĚÎpüŠçČéÜäŻCĆŞŠčܡB
p¸ŠľČŞçCĹÍSOŞÉČŠÁ˝ĚšŞCąęŕ§hÉđđ˝ľÄ˘ÜˇËB
i >= 6 ĹŕCr Ě i-1 űöŽC°çŔŰÉÍCr^2 Ě [(i-1)/2] űöŽCÉČéĚĹC
Żl̹ƪ˘ŚéĆvíęܡB
˝žľCi = 6CÚü̡łŞˇ×Ä 1CĹlŚęÎŞŠčܡŞCS O đC
1 ńńéĚÍłZp`C2 ńńéĚÍłOp`CĹCăŇÍ i =
3 ÉÜÜęéĚĹÓŞKvšB
ąĚć¤ÉCłĘČüčđĆCi >= 6 ĹÍCi ŞfĚęŞćčdvÉČéŕĚĆvíęܡB
ȨCĘ˝p`ÉŔéĚČçÎCűöŽĚđĚŠçťęđIŃoˇąĆÉČčܡËB
(ô˝wĺŤTĚlŚűÉîâ˝Ęđ)
ťĚăC
ĚŹęłńŠç[ÉÄCô˝wĺŤTĚđ@ĚAEgCđłŚÄ¸ŤÜľ˝B
ČčĚđßđđŚÄÜĆßĨŤÜˇBmŠÉąĚű@ČçŮĆńÇvZČľĹűöŽđąŻÜˇB
rCakCżk đĹĆŻlÉč`ľCż1 + ż2 + c + żi = ÎnCÜĹÍŻśĹˇB
˝žľCŕžĚsăCČşĹÍCi ĚăíčÉ m ƍܡB
ťąĹCtanżk = ak/rCk = 1,
2, c, mCż1 + ż2 + c + żm = ÎnCšB
ąąĹCćPĚ|CgĆľÄCtan ĹÍČ cos Ć sin đg˘ÜˇB
cos(ż1 + ż2 + c + żm) = cos(În) =
(-1)^nCsin(ż1 + ż2 + c + żm) = sin(În) = 0
łçÉCćQĚ|CgĆľÄCąęđĄfĹ\ľÜˇB
cos(ż1 + ż2 + c + żm) + i * sin(ż1
+ ż2 + c + żm) = (-1)^n
śÓÍĄfĚĎŞń]đ\ˇąĆŠçCcosżk + i * sinżkCk = 1, 2, c, mCĚĎůܡB
(cosż1 + i * sinż1) * (cosż2 + i * sinż2) * c *
(cosżm + i * sinżm) = (-1)^n
cosż1cosż2ccosżm 0 ĹźÓđÁÄC
(1 + i * tanż1) * (1 + i * tanż2) * c * (1 + i * tanżm) = (-1)^n/(cosż1cosż2ccosżm)
(1 + i *
a1/r) * (1 + i * a2/r) * c * (1 + i * am/r) = (-1)^n/(cosż1cosż2ccosżm)
ťąĹCśÓđŔŰÉWJˇęÎCŞ = 0CŠçC1/r ĚCľ˝ŞÁÄ
r ĚCűöŽŞžçęܡB
ťľÄCŞÍC1/r ĚďÂĚĎĚĚaĹCľŠŕÎĚŤŠç a1, a2, c, am ÉÖľÄÎĚšB
ÂÜčC1/rCľ˝ŞÁÄ rCĚďćĚWÍ
a1, a2, c, am ĚďÂĚĎĚî{Î̎šB
ąĚąĆćčCâPF`âRFÍCĚć¤ÉČčܡB
m = 3 Ěę
i^3 *
abc/r^3 + i * (a + b + c)/r = 0
- abc/r^3
+ (a + b + c)/r = 0
(a + b +
c)r^2 - abc = 0
m = 4 Ěę
i^3 * (abc
+ bcd + cda + dab)/r^3 + i * (a + b + c + d)/r = 0
- (abc +
bcd + cda + dab)/r^3 + (a + b + c + d)/r = 0
(a + b + c
+ d)r^2 - (abc + bcd + cda + dab) = 0
m = 5 Ěę
i^5 *
abcde/r^5 + i^3 * (abc + abd + abe + acd + ace + ade + bcd + bce + bde +
cde)/r^3 + i * (a + b + c + d + e)/r = 0C
abcde/r^5
- (abc + abd + abe + acd + ace + ade + bcd + bce + bde + cde)/r^3 + (a + b + c
+ d + e)/r = 0C
(a + b + c
+ d + e)r^4 - (abc + abd + abe + acd + ace + ade + bcd + bce + bde + cde)r^2 +
abcde = 0C
ąĚć¤ÉCeŐÉ r ĚűöŽđßéąĆŞĹŤÜˇB
ČşŻlÉľÄC
m ŞďĚę
°[k=0,(m-1)/2]{(-1)^k * (a1 ` am ̤ż 2k+1 ÂĚĎĚÎĚŽ) * r^(m-1-2k)} = 0
m ŞôĚę
°[k=0,(m-2)/2]{(-1)^k * (a1 ` am ̤ż 2k+1 ÂĚĎĚÎĚŽ) * r^(m-2-2k)} = 0
ĆęĘIČęĚűöŽŕĺľ˝vZČľÉeŐÉąŻÜˇB
\zǨčCr^2 Ě [(i-1)/2] űöŽCšËB
Ě tan ĚÁ@čÉćéđ@ĹÍC\zÍÂŕĚĚCm ŞĺŤČéĆvZŞĺĎšB
Ąfđ¤Üg¤ACfBAČÇCłˇŞžČCĆv˘ÜˇB
ȨCr ĚűöŽĚđÉÖľÄÍC(żĺÁĆžŻl@)ĹŚľ˝Ć¨čžĆv˘ÜˇB
(´z1)
Ĺɢ˝ű@ĹÍCtan ĚÁ@čÉćéWJĹC´IÉÍCCÓĚ i Ĺ r ĚűöŽđąŻÜˇB
ľŠľCťĚűöŽÍ r Ě i-1 űöŽÉČčCęĘÉÍCąąĆŕđąĆŕďľť¤ĹˇB
łçÉCi >= 5 ĹÍCęĘÉĄĚđĚÂ\Ťŕ čCťęçŞ}`IÉǤČÁĢéĚŠĚmFŕKvĹC
ČŠČŠĄGČąĆÉČ蝤šBźÉćčć˘đ@Ş éĚŠŕmęÜšńB
áŚÎCĘĚĘ˝p`ÉŔęÎCâPFĚ(Ęđ)Ěć¤ÉCÚü̡łŠçťĚĘĎ
S đvZĹŤęÎC
r = S/(a1
+ a2 + c + ai) ĆČPÉÜčܡBł˝p`ČÇÁĘČęÉÍąĚűŞ˘˘ĹˇËB
âQFĆâRFÍaZÉ éĆĚąĆB
˝žCaZĹÍďĚIČlŞ^ŚçęĢéąĆŞ˝˘ĚĹCÇąÜĹęĘIČĚž夊B
ęűCô˝wĺŤTÍčłÉȢĚĹmFōȢĚšŞCęĘIÉđŠęĢéĚž夊B
žĆľ˝çCąąĹŚľ˝đ@ćčŕć˘đ@Ş éƢ¤ąĆšËB
¤[ŢCǤâéĚŠČB
(´z2)
ťĚăC
ĚŹęłńŠçô˝wĺŤTÉÚÁĢéđ@đłŚÄŕç˘Üľ˝B
ťąĹCĚđßŕÜßÄÜĆßÄÝÜľ˝B
eŐÉęĘĚęĚ r ĚűöŽŞÜÁľܢܡBłˇŞô˝wĺŤTÉÚ鞯Ěđ@šËB
ĚŹęFŠčÜľ˝B˛ęJɴӾܡB čŞĆ¤˛´˘Üˇ
NO2ulcž¤v
08/06 1010Ş@óM XV 8/30
âP
@@˘`P`Q`R˘h`P`Q{˘h`Q`R{˘h`R`P
@@@@@@P^QE`P`QEhaP{P^QE`Q`REhaQ{P^QE`R`PEhaR
@@@@@@P^QE({)E{P^QE({)E{P^QE({)E
@@@@@@({{)
@Ü˝C(`P`Q{`Q`R{`R`P)^Q{{ơéĆCwĚöŽćčC
@@˘`P`Q`R{(|`P`Q)(|`Q`R)(|`R`P)}P^Q
@@@@@@[({{){({{)|({)}{({{)|({)}{({{)|({)}]P^Q
@@@@@@{({{)}P^Q
@@@@@@({{)
@@{^({{)}P^QEEE()
âQ
@lp``P`Q`R`S˘h`P`Q{˘h`Q`R{˘h`R`S{˘h`S`P
@@@@@@P^QE`P`QEhaP{P^QE`Q`REhaQ{P^QE`R`SEhaR{P^QE`S`PEhaS
@@@@@@P^QE({)E{P^QE({)E{P^QE({)E{P^QE({)E
@@@@@@({{{)
@Ü˝C(`P`Q{`Q`R{`R`S{`S`P)^Q{{{ơéD
@lp``P`Q`R`SÍ~hÉOھĢéĚĹCu[}Ov^ĚöŽćčC
@@lp``P`Q`R`S{(|`P`Q)(|`Q`R)(|`R`S)(|`S`P)}P^Q
@@@@@@[{({{{)|({)}{({{{)|({)}{({{{)|({)}{({{{)|({)}]P^Q
@@@@@@{({)({)({)}P^Q
@@@@@@({{{)
@@{({)({)({)({)}P^Q^({{{)EEE()
âR
@Ú`PhaPĆPơéD
@˘h`PaPɨ˘ÄCtanĆP^
@@ĆParctan(^)
@ÚaThaPQĆPĹ čCŻlÉC
@@ÚaPhaQQĆQCÚaQhaRQĆRCÚaRhaSQĆSCÚaShaTQĆT
ơéĆC
@@Q(ĆP{ĆQ{ĆR{ĆS{ĆT)QÎ
@@arctan(^){arctan(^){arctan(^){arctan(^){arctan(
^)ÎEEE()
@źĚ˝p`ĚęŕŻlÉŹ§ˇéD
@ŔŰCPÓ̡łŞPĚłOp`ɨ˘ÄCP^QĹ éĚĹC
@@Rarctan{(P^Q)^}Î
@@artan{P^(Q)}Î^R
@@P^(Q)tan(Î^R)ăR
@@P^(QăR)
@âPĚĘŠçC
@@[{(P^Q)(P^Q)(P^Q)}^(P^Q{P^Q{P^Q)]P^QP^(QăR)
@PÓ̡łŞPĚłű`ɨ˘ÄCP^QĹ éĚĹC
@@Sarctan{(P^Q)^}Î
@@artan{P^(Q)}Î^S
@@P^(Q)tan(Î^S)P
@@P^Q
@âQĚĘŠçC
@@{(P^Q{P^Q)(P^Q{P^Q)(P^Q{P^Q)(P^Q{P^Q)}P^Q^(P^Q{P^Q{P^Q{P^Q)P^Q
NO3uńxĐŻŘv 08/07
2127Ş@óM
uńxĐŻŘv 08/08 1801Ş@óM
XV 8/30
ć324ńwIČĺâč Ěđ
()
â1Fr=ă(a*b*c/(a+b+c))
â2Fr=ă((a*b*c+a*b*d+a*c*d+b*c*d)/(a+b+c+d))
â3Fr Ě˝ˇűöŽÍC
a*b*c*d*e-(a*b*c+a*b*d+a*b*e+a*c*d+a*c*e+a*d*e+b*c*d+b*c*e+b*d*e+c*d*e)*r^2+(a+b+c+d+e)*r^4=0
3ČăĚŽ n ÉÎľÄC
SOCźa r Ě~ÉOÚˇé n p` A[1]A[2]cA[n] đlŚéD
Ó A[i]A[i+1] Ć~ĆĚÚ_đ B[i] ĆľCüŞA[i]B[i]̡łđa[i]ơéD
(i=1,2, c ,n ˝žľCA[n+1] Í A[1]ĆlŚéD)
ąĚĆŤC
tan(ÚOA[i]B[i]) = r/a[i]
ĆČÁĢéD
ąąĹnđCÓĚłŽĆľÄlŚéD
xĚ˝Ž f(x) Ěx^nĚWđ [x^n]f(x) Ć\ˇąĆɡéD
nÂĚŔ ż[1]Cż[2]C c Cż[n] ¨ćŃ CÓĚŽ k ÉÎľÄC
s(n,k) đĚć¤Éč`ˇéD
s(n,k)=[x^k]Ž[i=1`n](1+x*tan(ż[i]))D
(ľ˝ŞÁÄCk0 ¨ćŃ kn ĚĆŤÉÍCs(n,k)=0 ĆČéD)
áŚÎn=3ĚĆŤCx Ě˝Ž
Ž[i=1`3](1+x*tan(ż[i]))=(1+x*tan(ż[1]))*(1+x*tan(ż[2]))*(1+x*tan(ż[3]))
đWJľ˝ĆŤĚx^2ĚWÍ
tan(ż[1])*tan(ż[2])+tan(ż[1])*tan(ż[3])+tan(ż[2])*tan(ż[3])
Ĺ éĚĹC
s(3,2)=tan(ż[1])*tan(ż[2])+tan(ż[1])*tan(ż[3])+tan(ż[2])*tan(ż[3])D
(âč)
CÓĚłŽnÉÎľÄCĚ2ÂĚŽŞŹč§ÂD
sin(°[i=1`n]ż[i])=(Ž[i=1`n]cos(ż[i]))*(°[i=0`]((-1)^i)*s(n,2*i+1))C
cos(°[i=1`n]ż[i])=(Ž[i=1`n]cos(ż[i]))*(°[i=0`]((-1)^i)*s(n,2*i))D
(Řž)
ŘžÍ n ÉÖˇéA[@ÉćéD
ܸ̹ĆÉÓˇéD
Ž[k=1`n+1](1+x*tan(ż[k]))
=Ž[k=1`n](1+x*tan(ż[k])) + (Ž[k=1`n](1+x*tan(ż[k])))*(x*tan(ż[n+1]))
Ĺ éĚĹC
s(n+1,2*i)=s(n,2*i)+s(n,2*i-1)*tan(ż[n+1])@¨ćŃ
s(n+1,2*i+1)=s(n,2*i+1)+s(n,2*i)*tan(ż[n+1])
ŞŹč§ÂD
ąęçĚŽĚźÓÉ (-1)^i đ|ŻÄCłçÉźÓĚa °[i=0`] đlŚęÎC
°[i=0`]((-1)^i)*s(n+1,2*i)
=°[i=0`]((-1)^i)*s(n,2*i)+(°[i=0`]((-1)^i)*s(n,2*i-1))*tan(ż[n+1]) ---()
¨ćŃ
°[i=0`]((-1)^i)*s(n+1,2*i+1)
=°[i=0`]((-1)^i)*s(n,2*i+1)+(°[i=0`]((-1)^i)*s(n,2*i))*tan(ż[n+1]) ---()
ŞŹč§ÂD
n=1ĚĆŤÍ(âč)Ě2ÂĚŽÍłľ˘D
nČşĚCÓĚłŽÉÎľÄ(âč)Ě2ÂĚŽŞŹč§ÁĢéĆźčˇéDąĚĆŤC
sin(°[i=1`n+1]ż[i])
=sin(°[i=1`n]ż[i]+ż[n+1])
=sin(°[i=1`n]ż[i])*cos(ż[n+1]) + cos(°[i=1`n]ż[i])*sin(ż[n+1])
=(Ž[i=1`n]cos(ż[i]))*(°[i=0`]((-1)^i)*s(n,2*i+1))*cos(ż[n+1])
+(Ž[i=1`n]cos(ż[i]))*(°[i=0`]((-1)^i)*s(n,2*i))*tan(ż[n+1])*cos(ż[n+1])
=(Ž[i=1`n+1]cos(ż[i]))*( °[i=0`]((-1)^i)*s(n,2*i+1)+°[i=0`]((-1)^i)*s(n,2*i)*tan(ż[n+1]) )
=(Ž[i=1`n+1]cos(ż[i]))*(°[i=0`]((-1)^i)*s(n+1,2*i+1))
(ć())
łçÉC
cos(°[i=1`n+1]ż[i])
=cos(°[i=1`n]ż[i]+ż[n+1])
=cos(°[i=1`n]ż[i])*cos(ż[n+1]) - sin(°[i=1`n]ż[i])*sin(ż[n+1])
=(Ž[i=1`n]cos(ż[i]))*(°[i=0`]((-1)^i)*s(n,2*i))*cos(ż[n+1])
-(Ž[i=1`n]cos(ż[i]))*(°[i=0`]((-1)^i)*s(n,2*i+1))*tan(ż[n+1])*cos(ż[n+1])
=(Ž[i=1`n+1]cos(ż[i]))*(°[i=0`]((-1)^i)*s(n,2*i)-°[i=0`]((-1)^i)*s(n,2*i+1)*tan(ż[n+1]))
=(Ž[i=1`n+1]cos(ż[i]))*(°[i=0`]((-1)^i)*s(n,2*i)+°[i=0`]((-1)^i)*s(n,2*i-1)*tan(ż[n+1]))
=(Ž[i=1`n+1]cos(ż[i]))*(°[i=0`]((-1)^i)*s(n+1,2*i))
(ć())
ćÁÄCn+1ĚĆŤÉŕ(âč)Ě2ÂĚŽÍłľ˘D(ŘžI)
˘ÜC
ż[i]=ÚOA[i]B[i] (i=1,2, c ,n) ơéD
s(n,k)=[x^k]Ž[i=1`n](1+x*tan(ż[i]))
=[x^k]Ž[i=1`n](1+x*r/a[i])
Ĺ éD
ąĚĆŤC°[i=1`n]ż[i]=Î*(n-2)/2D
ćÁÄC
nŞďĚĆŤÍCcos(°[i=1`n]ż[i])=0 Ĺ čC
(âč)ćčC °[i=0`]((-1)^i)*s(n,2*i)=0 ĆČéąĆŞíŠéD
Ü˝CnŞôĚĆŤÍCsin(°[i=1`n]ż[i])=0 Ĺ čC
(âč)ćčC°[i=0`]((-1)^i)*s(n,2*i+1)=0 ĆČéąĆŞíŠéD
n=3ĚĆŤÍC
°[i=0`]((-1)^i)*s(3,2*i)=0
Ě s(3,0)-s(3,2)=0
Ě
1-(r/a[1])*(r/a[2])-(r/a[2])*(r/a[3])-(r/a[3])*(r/a[1])=0
Ě a[1]*a[2]*a[3]-(r^2)*(a[3]+a[1]+a[2])=0
Ě r=(a[1]*a[2]*a[3]/(a[1]+a[2]+a[3]))^(1/2)D
n=4ĚĆŤÍC
°[i=0`]((-1)^i)*s(4,2*i+1)=0
Ě s(4,1)-s(4,3)=0
Ě
r*(1/a[1]+1/a[2]+1/a[3]+1/a[4])-r^3*(1/(a[1]*a[2]*a[3])+1/(a[1]*a[2]*a[4])+
1/(a[1]*a[3]*a[4])+1/(a[2]*a[3]*a[4]))=0
Ě r=((a[1]*a[2]*a[3]+a[1]*a[2]*a[4]+a[1]*a[3]*a[4]+a[2]*a[3]*a[4])/(a[1]+a[2]+a[3]+a[4]))^(1/2).
n=5ĚĆŤÍC
°[i=0`]((-1)^i)*s(5,2*i)=0
Ě s(5,0)-s(5,2)+s(5,4)=0
Ě
1-(r^2)*(1/(a[1]*a[2])+1/(a[1]*a[3])+1/(a[1]*a[4])+1/(a[1]*a[5])+1/(a[2]*a[3])
+1/(a[2]*a[4])+1/(a[2]*a[5])+1/(a[3]*a[4])+1/(a[3]*a[5])+1/(a[4]*a[5]))
+(r^4)*(1/(a[1]*a[2]*a[3]*a[4])+1/(a[1]*a[2]*a[3]*a[5])+1/(a[1]*a[2]*a[4]*a[5])
+1/(a[1]*a[3]*a[4]*a[5])+1/(a[2]*a[3]*a[4]*a[5]))=0
Ë a[1]*a[2]*a[3]*a[4]*a[5]
-(r^2)*(a[1]*a[2]*a[3]+a[1]*a[2]*a[4]+a[1]*a[2]*a[5]+a[1]*a[3]*a[4]+a[1]*a[3]*a[5]
+a[1]*a[4]*a[5]+a[2]*a[3]*a[4]+a[2]*a[3]*a[5]+a[2]*a[4]*a[5]+a[3]*a[4]*a[5])
+(r^4)*(a[1]+a[2]+a[3]+a[4]+a[5])=0
Čş a[i] đPÉ ai ĆŠD
@
n=6ĚĆŤÍC
°[i=0`]((-1)^i)*s(6,2*i+1)=0
Ě s(6,1)-s(6,3)+s(6,5)=0
Ë(a1*a2*a3*a4*a5+a1*a2*a3*a4*a6+a1*a2*a3*a5*a6+a1*a2*a4*a5*a6+a1*a3*a4*a5*a6
+a2*a3*a4*a5*a6)*r-(a1*a2*a3+a1*a2*a4+a1*a2*a5+a1*a2*a6+a1*a3*a4+a1*a3*a5
+a1*a3*a6+a1*a4*a5+a1*a4*a6+a1*a5*a6+a2*a3*a4+a2*a3*a5+a2*a3*a6+a2*a4*a5+a2*a4*a6
+a2*a5*a6+a3*a4*a5+a3*a4*a6+a3*a5*a6+a4*a5*a6)*r^3+(a1+a2+a3+a4+a5+a6)*r^5=0
n=7ĚĆŤÍC
°[i=0`]((-1)^i)*s(7,2*i)=0
Ě s(7,0)-s(7,2)+s(7,4)-s(7,6)=0
Ëa1*a2*a3*a4*a5*a6*a7
-(a1*a2*a3*a4*a5+a1*a2*a3*a4*a6+a1*a2*a3*a4*a7+a1*a2*a3*a5*a6+a1*a2*a3*a5*a7
+a1*a2*a3*a6*a7+a1*a2*a4*a5*a6+a1*a2*a4*a5*a7+a1*a2*a4*a6*a7+a1*a2*a5*a6*a7
+a1*a3*a4*a5*a6+a1*a3*a4*a5*a7+a1*a3*a4*a6*a7+a1*a3*a5*a6*a7+a1*a4*a5*a6*a7
+a2*a3*a4*a5*a6+a2*a3*a4*a5*a7+a2*a3*a4*a6*a7+a2*a3*a5*a6*a7+a2*a4*a5*a6*a7
+a3*a4*a5*a6*a7)*r^2
+(a1*a2*a3+a1*a2*a4+a1*a2*a5+a1*a2*a6+a1*a2*a7+a1*a3*a4+a1*a3*a5+a1*a3*a6
+a1*a3*a7+a1*a4*a5+a1*a4*a6+a1*a4*a7+a1*a5*a6+a1*a5*a7+a1*a6*a7+a2*a3*a4
+a2*a3*a5+a2*a3*a6+a2*a3*a7+a2*a4*a5+a2*a4*a6+a2*a4*a7+a2*a5*a6+a2*a5*a7
+a2*a6*a7+a3*a4*a5+a3*a4*a6+a3*a4*a7+a3*a5*a6+a3*a5*a7+a3*a6*a7+a4*a5*a6
+a4*a5*a7+a4*a6*a7+a5*a6*a7)*r^4
-(a1+a2+a3+a4+a5+a6+a7)*r^6=0
Ƣ¤Ó¤ÉČéB
aZĆƢ¤ĚÍ\ʢâčđlŚÄ˘˝ĚšËD
Ţç͢Á˝ ˘ÇĚć¤ÉľÄąĚâčđđ˘Ä˘˝Ěž夊H
ŠČ蝥Şí˘ÄŤÜľ˝D
NO4uNŤĚ¨śłńv 08/09 1653Ş@óM XV 8/30
324đ@NŤĚ¨śłń
âčP
Op`Ě3Ó̡łŞŞŠÁĢéĆŤAťĚĘĎSÍwĚöŽŠçA šBi}1j
}2ĹS˘A1A2A3˘OA1A2{˘OA2A3{˘OA3A1ĆlŚéĆA
ęűAwĚöŽĹlŚéĆA
ńÂĚĘŠçA
ąĚŽÍAaAbAcÉ¢ÄÎĚšB
âčQ
ÉA}2đŕĆÉľA}3Ěć¤ÉV˝ÉAÚüA3A4đlŚÜˇB
ĄÜĹĚA3ÍA3fAB3ÍB4AˇłcÍcfƾܡB
S A1A2A3A4˘OA1A2{˘OA2A3{˘OA3A4{˘OA4A1ĆlŚéĆA
ęűAS˘A1A2A3f|˘A3fA3A4ĆlŚéĆA
ČĚĹA
ĽĽĽ(1)
ĆČčܡB
łÄA OB2A3fB4đ}4ɲŤoľÜˇB
OB2A3fB42~˘OB2A3fcfĽĽĽ(2)
ęűA
OB2A3fB4 OB2A3B3{ OB3A4B4{˘A3fA3A4
ơéĆA
(2)A(3)đA§łšéĆA
ąąĹA}4đŠÄAcfc{d ÍȢĚĹA
ąęđ(1)ÉăüľÄA
źÓ2ćľÄA
şĚŽÍAaAbAcAdÉ¢ÄÎĚĹȢĚĹ
âčR
lŚűÍAĄÜĹĆŻśĹˇB
Üp`A1A2A3A4A5ĚĘĎSÍAźarđp˘éĆA
ęűA A1A2A3A4fĚĘĎUŠç˘A4fA4A5ĚĘĎTř˘ÄŕÜéĚĹA
žŠçűöŽĚęÂÍA
ÉA OB3A4fB5ĚĘĎđlŚÄŕ¤ęÂĚűöŽÍA
(5)ŠçdfÉ¢ÄđŤA(4)ÉăüľÄrÉ¢ÄđąĆÉČčܡB
vZ;ܚńŞAĚŚŞ\złęܡB
iaAbAcAdAeĚÎĚŽj
ĚŹęFâčRĚĘÉÍëčŞ čÜľ˝ĚĹAşÉůłŞ čܡB
NO5uNŤĚ¨śłńv 08/11 2121Ş@óM XV 8/30@
324_2đ@NŤĚ¨śłń
ő
łÚtanĆÉ¢ÄĚAÁ@čđmFľÄ¨ŤÜˇB
pŞ3ÂA4ÂĚŕÝĨŤÜˇB
np`ĚŕpĚaÍAn(Î|2)šB
âčP
ÚA1AAÚA2BAÚA3CĆ\ˇąĆɾܡB
}ćčA
Ü˝AA{B{CÎČĚĹA
ćÁÄA
âčQ
lŚűÍAâčPĆŻlšB
Ü˝AA{B{C{D2ÎČĚĹA
ćÁÄA
âčR
Ü˝AA{B{C{D{E3ÎČĚĹA
ćÁÄA
ąęŞArđßéűöŽĹˇB
öŽđ ÄÍßéĆA
ĆČčܡB
ŞĚĚ ÍA0ÉČçȢĚĹAOĚđŢ˝\zĚ
ÍëčžĆ˘¤ąĆÉČčܡB