•˝Ź‚Q‚V”N‚WŒŽ‚Q“ú

[—Ź‚ꐯ]

@@@@@‘ć324‰ń”Šw“I‚ȉž•ĺ–â‘č

@@@@@@ƒ‰đ“š•ĺWŠúŠÔF8ŒŽ2“ú`8ŒŽ30“ú„

m‰~‚ÉŠOÚ‚ˇ‚é‘˝ŠpŒ`n

“ú–{‚̐”Šw@‰˝‘č‰đ‚Ż‚Ü‚ˇ‚Šu‰şviX–ko”Łj‚đ“Ç‚ń‚Ĺ‚˘‚āAŽŸ‚Ě–â‘č‚đl‚Ś‚Ü‚ľ‚˝B

”źŒa‚’‚̉~‚ÉŠOÚ‚ˇ‚é‘˝ŠpŒ`‚đ‚`‚P‚`‚Q‚`‚REEE‚`‚‰‚Ć‚ľA}‚̂悤‚ɐړ_‚đ‚a‚PC‚a‚QC‚a‚RCEEEC‚a‚‰‚Ć‚ˇ‚éB

–â‚PF‚‰‚R‚ĚŽOŠpŒ`‚Ě‚Ć‚ŤAÚü‚Ě’ˇ‚ł‚đ‚`‚P‚a‚P‚C‚`‚Q‚a‚Q‚‚C‚`‚R‚a3‚ƒ‚Ć‚ľ‚āA‚’‚đ‚,‚‚,‚ƒ‚Ĺ•\‚šB

–â‚QF‚‰‚S‚ĚŽlŠpŒ`‚Ě‚Ć‚ŤAÚü‚Ě’ˇ‚ł‚đ‚`‚P‚a‚P‚C‚`‚Q‚a‚Q‚‚C‚`‚R‚a3‚ƒC‚`‚S‚a‚S‚„‚Ć‚ľ‚āA‚’‚đ‚C‚‚C‚ƒA‚„‚Ĺ•\‚šB

–â‚RF‚‰‚T‚ĚŒÜŠpŒ`‚Ě‚Ć‚ŤAÚü‚Ě’ˇ‚ł‚đ‚`‚P‚a‚P‚C‚`‚Q‚a‚Q‚‚C‚`‚R‚a3‚ƒC‚`‚S‚a‚S‚„C‚`‚T‚a‚T‚…‚Ć‚ľ‚āA‚’‚đ‹‚ß‚é•ű’öŽŽ‚đě‚ęB

@zu324

ŽQl•śŒŁF“ú–{‚̐”Šw@‰˝‘č‰đ‚Ż‚Ü‚ˇ‚Šu‰şviX–ko”Łjƒ_ƒ“Eƒ\ƒRƒƒtƒXƒL[A[ě‰pr‹¤’˜

ŽQl@–â‚QA–â‚R‚͍]ŒËŽž‘ă‚Ě˜aŽZ‘uŽZ–@•pv’ˇ’JěO ‰{/ŽR–{‰ę‘O •Ňi1841”NjBˆę”Ę“I‚ȉđ–@‚́uŠô‰˝Šw‘厍“Ti‘S8ŠŞj‚ɏ‘‚˘‚Ä‚ ‚é‚ť‚¤‚Ĺ‚ˇB

NO1uuchinyanv         08/02 16Žž14•Ş@ŽóM 

uuchinyanv         08/03 13Žž56•Ş@ŽóM 

uuchinyanv         08/05 11Žž56•Ş@ŽóM  XV 8/30

‚Ĺ‚Ť‚é‚ž‚Żˆę”Ę“I‚ɍl‚Ś‚Ä‚Ý‚Ü‚ľ‚傤B

‰~‚Ě’†S‚đ OC”źŒa‚đ rCk = 1, 2, c i ‚Ć‚ľ‚āCAkBk = akC’†SŠp/2 = ÚAkOBk = ƒżkC‚Ć‚ľ‚Ü‚ˇB

‚ˇ‚é‚ƁCtanƒżk = ak/rC’†SŠp‚Ě˜a = 2ƒż1 + 2ƒż2 + c + 2ƒżi = 2ƒÎnCƒż1 + ƒż2 + c + ƒżi = ƒÎnC

‚˝‚ž‚ľ n ‚͐ł‚̐Ž”C‚Ĺ‚ˇBn ‚đ“ą“ü‚ľ‚Ä’†S O ‚̉ń‚č‚𕥐”‰ń‰ń‚Á‚ĕ‚ś‚é‚ŕ‚Ě‚ŕŠÜ‚ß‚Ä‚˘‚Ü‚ˇB

‚ą‚Ě–â‘č‚Ě‘˝ŠpŒ`‚Í’Ęí‚Ě“Ę‘˝ŠpŒ`‚Ĺ‚ą‚¤‚ľ‚˝•Ď‘Ľ“I‘˝ŠpŒ`‚Í‘ÎŰ‚É‚ľ‚Ä‚˘‚Č‚˘‚悤‚ÉŒŠ‚Ś‚Ü‚ˇ‚ށC

Œă‚ĹŽŚ‚ˇ‚悤‚É‚ą‚ę‚ŕœŠO‚ľ‚Č‚˘•ű‚Ş—˜_“I‚ɂ̓XƒbƒLƒŠ‚ˇ‚é‚悤‚Ĺ‚ˇB

‚Ü‚˝C‚ł‚ˇ‚ނɁC0 < ’†SŠp = 2ƒżk < ƒÎC0 < ƒżk < ƒÎ/2C‚Ć‚ˇ‚é‚Ě‚ŞŽŠ‘R‚Ĺ‚ľ‚傤B

‚ł‚āC‚ą‚ĚđŒ‚Ě‰ş‚ŁCCtan(ƒż1 + ƒż2 + c + ƒżi) = tan(ƒÎn) = 0C‚É‚Č‚č‚Ü‚ˇB

‚ą‚ę‚ć‚čCś•Ó‚Ě tan(ƒż1 + ƒż2 + c + ƒżi) ‚đ tan ‚̉Á–@’č—‚đŽg‚Á‚Ÿ“WŠJ‚ľ

tanƒż1Ctanƒż2CcCtanƒżi ‚Ĺ•\‚ľ‚Ä a1/rCa2/rCcCai/r ‚đ‘ă“ü‚ľŽ—‚ˇ‚ę‚΁C

r ‚Ě•ű’öŽŽCˆČ‰ş‚Ě—á‚Š‚ç–ž‚ç‚Š‚Ĺ‚ˇ‚ށCr ‚Ě i-1 ŽŸ•ű’öŽŽC‚Ş“ž‚ç‚ę‚Ü‚ˇB

‚ť‚ą‚ŁC‚ą‚Ě•ű’öŽŽ‚đ‰đ‚Ż‚΁C‰đ‚Ż‚ę‚Î (^^;Cr ‚Ş‹‚ß‚ç‚ę‚Ü‚ˇB

ˆČ‰şC‹ď‘Ě“I‚É‚â‚Á‚Ä‚Ý‚Ü‚ľ‚傤B

–â‚PF

i = 3C

A1B1 = aCA2B2 = bCA3B3 = cCÚA1OB1 = ƒżCÚA2OB2 = ƒŔCÚA3OB3 = ƒÁC‚Ć‚ľ‚Ü‚ˇB

tanƒż = a/rCtanƒŔ = b/rCtanƒÁ = c/rC

tan(ƒż+ƒŔ) = (tanƒż + tanƒŔ)/(1 - tanƒżtanƒŔ) = (a/r + b/r)/(1 - (a/r)(b/r)) = (a + b)r/(r^2 - ab)C

tan(ƒż+ƒŔ+ƒÁ) = (tan(ƒż+ƒŔ) + tanƒÁ)/(1 - tan(ƒż+ƒŔ)tanƒÁ)

= ((a + b)r/(r^2 - ab) + c/r)/(1 - ((a + b)r/(r^2 - ab))(c/r))

= ((a + b)r^2 + c(r^2 - ab))/((r^2 - ab)r - (a + b)cr)

= ((a + b + c)r^2 - abc)/(r^3 - (ab + bc + ca)r)

tan(ƒż+ƒŔ+ƒÁ) = 0 ‚ć‚čC

(a + b + c)r^2 - abc = 0C

r = ă(abc/(a + b + c))C

‚É‚Č‚č‚Ü‚ˇB

 (•Ę‰đ)

i = 3C‚‚܂čCŽOŠpŒ`‚Ěę‡‚́C–ĘĎŒo—R‚Ĺ‚ć‚č—eˆŐ‚É‹‚ß‚ç‚ę‚Ü‚ˇB

A1A2 = a + bCA2A3 = b + cCA3A1 = c + aC‚Ȃ̂ŁCs = (A1A2 + A2A3 + A3A1)/2 = a + b + cC‚ć‚čC

˘A1A2A3 = ˘OA1A2 + ˘OA2A3 + ˘OA3A1 = (A1A2 + A2A3 + A3A1)r/2 = (a + b + c)rC

ˆę•ű‚ŁCƒwƒƒ“‚ĚŒöŽŽ‚ć‚čC

˘A1A2A3 = ă(s(s - (a + b))(s - (b + c))(s - (c + a)))  = ă(abc(a + b + c))C

‚Ȃ̂ŁC

(a + b + c)r = ă(abc(a + b + c))C

r = ă(abc/(a + b + c))C

‚É‚Č‚č‚Ü‚ˇB

–â‚QF

i = 4C

A1B1 = aCA2B2 = bCA3B3 = cCA4B4 = dC

ÚA1OB1 = ƒżCÚA2OB2 = ƒŔCÚA3OB3 = ƒÁCÚA4OB4 = ƒÂC‚Ć‚ľ‚Ü‚ˇB

tanƒż = a/rCtanƒŔ = b/rCtanƒÁ = c/rCtanƒÂ = d/rC

tan(ƒż+ƒŔ) = (a + b)r/(r^2 - ab)Ctan(ƒÁ+ƒÂ) = (c + d)r/(r^2 - cd)C

tan(ƒż+ƒŔ+ƒÁ+ƒÂ) = (tan(ƒż+ƒŔ) + tan(ƒÁ+ƒÂ))/(1 - tan(ƒż+ƒŔ)tan(ƒÁ+ƒÂ)) = 0C

tan(ƒż+ƒŔ) + tan(ƒÁ+ƒÂ) = 0C

(a + b)r/(r^2 - ab) + (c + d)r/(r^2 - cd) = 0C

r((a + b + c + d)r^2 - (abc + bcd + cda + dab)) = 0C

r = ă((abc + bcd + cda + dab)/(a + b + c + d))C

‚É‚Č‚č‚Ü‚ˇB

–â‚RF

i = 5C

A1B1 = aCA2B2 = bCA3B3 = cCA4B4 = dCA5B5 = eC

ÚA1OB1 = ƒżCÚA2OB2 = ƒŔCÚA3OB3 = ƒÁCÚA4OB4 = ƒÂCÚA5OB5 = ƒĂC‚Ć‚ľ‚Ü‚ˇB

tanƒż = a/rCtanƒŔ = b/rCtanƒÁ = c/rCtanƒÂ = d/rCtanƒĂ = e/rC

tan(ƒż+ƒŔ+ƒÁ) = ((a + b + c)r^2 - abc)/(r^3 - (ab + bc + ca)r) tan(ƒÂ+ƒĂ) = (d + e)r/(r^2 - de)C

tan(ƒż+ƒŔ+ƒÁ+ƒÂ+ƒĂ) = (tan(ƒż+ƒŔ+ƒÁ) + tan(ƒÂ+ƒĂ))/(1 - tan(ƒż+ƒŔ+ƒÁ)tan(ƒÂ+ƒĂ)) = 0C

tan(ƒż+ƒŔ+ƒÁ) + tan(ƒÂ+ƒĂ) = 0C

((a + b + c)r^2 - abc)/(r^3 - (ab + bc + ca)r) + (d + e)r/(r^2 - de) = 0C

((a + b + c)r^2 - abc)(r^2 - de) + (d + e)r(r^3 - (ab + bc + ca)r) = 0C

(a + b + c + d + e)r^4 - (abc + abd + abe + acd + ace + ade + bcd + bce + bde + cde)r^2 + abcde = 0C

‚É‚Č‚č‚Ü‚ˇB

 (‚ż‚ĺ‚Á‚Ć‚ž‚ŻlŽ@)

‚ą‚ę‚́Cr^2 ‚Ě‚QŽŸ•ű’öŽŽ‚Č‚Ě‚Ĺ‰đ‚­‚ą‚Ć‚Ş‚Ĺ‚ŤCr > 0 ‚̉đ‚͈ę”Ę‚É“ń‚‚ ‚č‚Ü‚ˇB

‚ľ‚Š‚ľC‚ą‚ę‚ç‚Ş}Œ`“I‚É‚Ç‚¤‚˘‚¤‚ŕ‚Ě‚ŠC‚ą‚Ě–â‘č‚Ĺ‹ť–Ą‚ ‚é‚ŕ‚Ě‚ŠC‚Í‚Ü‚˝•Ę‚Ě˜b‚Ĺ‚ˇB

—á‚Ś‚΁Ca = b = c = d = e = 1 ‚Ěę‡‚́Cˆę•Ó‚Ě’ˇ‚ł‚Ş 2 ‚Ě“™•ÓŒÜŠpŒ`‚Ĺ‚ˇB

‚ť‚ľ‚āC•’Ę‚Ě“Ę‘˝ŠpŒ`‚Č‚ç‚΁Cƒż = ƒŔ = ƒÁ = ƒÂ = ƒĂ = ƒÎ/5 = 36‹‚ŁC‚ą‚ę‚͐łŒÜŠpŒ`‚Ĺ‚ˇB

ˆę•ű‚ŁCr ‚Ě•ű’öŽŽ‚́C5r^4 - 10r^2 + 1 = 0C‚ŁCr = ă(1 } 2/ă5)C‚Ĺ‚ˇB

r = ă(1 + 2/ă5) > 1 ‚Ě‚Ć‚Ť‚́C

tanƒż = 1/r = ă(5 - 2ă5) < 1Ccosƒż = (ă5 + 1)/4C‚ŁCƒż = 36‹CłŒÜŠpŒ`C‚Ĺ‚ˇB

r = ă(1 - 2/ă5) < 1 ‚Ě‚Ć‚Ť‚́C

tanƒż = 1/r = ă(5 + 2ă5) > 1Ccosƒż = (ă5 - 1)/4C‚ŁCƒż > 45‹‚ĆŠď–­‚ȉđ‚Ĺ‚ˇB

‚ą‚ę‚́C(cos(ƒż/2))^2 = (1 + cosƒż)/2 = (3 + ă5)/8 = ((ă5 + 1)/4)^2Ccos(ƒż/2) = (ă5 + 1)/4C

ƒż/2 = 36‹Cƒż = 72‹C‚Ć‚Č‚čCƒż = ƒŔ = ƒÁ = ƒÂ = ƒĂ = 72‹= 2ƒÎ/5C‚Ĺ‚ˇB

‚‚܂čCĹ‰‚É’ˆÓ‚ľ‚˝ n = 2 ‚Ěę‡C’†S O ‚đ 2 ‰ń‰ń‚Á‚ĕ‚ś‚é‘˝ŠpŒ`C‚Ĺ‚ˇB

‚ą‚¤‚ľ‚˝‚ą‚Ć‚đ‚ŕ‚Ƃɐ}Œ`“I‚ČŒ`ó‚đŒŸ“˘‚ˇ‚é‚ƁCłŒÜŠpŒ`‚̑Ίpü‚Š‚ç‚Č‚éŒÜ䊐ŻC‚Ć•Ş‚Š‚č‚Ü‚ˇB

’p‚¸‚Š‚ľ‚Č‚Ş‚çCĹ‰Ž„‚Í‘S‚­”O“Ş‚É‚Č‚Š‚Á‚˝‚Ě‚Ĺ‚ˇ‚ށC‚ą‚ę‚ŕ—§”h‚ÉđŒ‚đ–ž‚˝‚ľ‚Ä‚˘‚Ü‚ˇ‚ˁB

i >= 6 ‚Ĺ‚ŕCr ‚Ě i-1 ŽŸ•ű’öŽŽC‹°‚ç‚­ŽŔŰ‚ɂ́Cr^2 ‚Ě [(i-1)/2] ŽŸ•ű’öŽŽC‚É‚Č‚é‚̂ŁC

“Ż—l‚Ě‚ą‚Ć‚Ş‚˘‚Ś‚é‚ĆŽv‚í‚ę‚Ü‚ˇB

‚˝‚ž‚ľCi = 6CÚü‚Ě’ˇ‚ł‚Ş‚ˇ‚×‚Ä 1C‚ōl‚Ś‚ę‚ΕނŠ‚č‚Ü‚ˇ‚ށC’†S O ‚đC

1 ‰ń‰ń‚é‚̂͐ł˜ZŠpŒ`C2 ‰ń‰ń‚é‚̂͐łŽOŠpŒ`C‚ŁCŒăŽŇ‚Í i = 3 ‚ÉŠÜ‚Ü‚ę‚é‚Ě‚Ĺ’ˆÓ‚Ş•K—v‚Ĺ‚ˇB

‚ą‚̂悤‚ɁC–ł‘Ę‚ČŽü‚č‚đœ‚­‚ƁCi >= 6 ‚ł́Ci ‚Ş‘f”‚Ěę‡‚Ş‚ć‚čd—v‚É‚Č‚é‚ŕ‚Ě‚ĆŽv‚í‚ę‚Ü‚ˇB

‚Č‚¨C“Ę‘˝ŠpŒ`‚ÉŒŔ‚é‚Ě‚Č‚ç‚΁C•ű’öŽŽ‚̉đ‚Ě’†‚Š‚ç‚ť‚ę‚đ‘I‚яo‚ˇ‚ą‚Ć‚É‚Č‚č‚Ü‚ˇ‚ˁB

 (Šô‰˝Šw‘厍“T‚̍l‚Ś•ű‚ÉŠî‚Ă‚˘‚˝•Ę‰đ)

‚ť‚ĚŒăC…‚Ě—Ź‚ę‚ł‚ń‚Š‚烁[ƒ‹‚ɂāCŠô‰˝Šw‘厍“T‚̉đ–@‚ĚƒAƒEƒgƒ‰ƒCƒ“‚đ‹ł‚Ś‚Ä’¸‚Ť‚Ü‚ľ‚˝B

Ž„‚Č‚č‚̉đŽß‚đŒđ‚Ś‚Ä‚Ü‚Ć‚ß‚Ä‚¨‚Ť‚Ü‚ˇBŠm‚Š‚É‚ą‚Ě•ű–@‚Č‚ç‚Ů‚Ć‚ń‚ÇŒvŽZ‚Č‚ľ‚Ĺ•ű’öŽŽ‚đ“ą‚Ż‚Ü‚ˇB

rCakCƒżk ‚đĹ‰‚Ć“Ż—l‚É’č‹`‚ľCƒż1 + ƒż2 + c + ƒżi = ƒÎnC‚Ü‚Ĺ‚Í“Ż‚ś‚Ĺ‚ˇB

‚˝‚ž‚ľCŕ–ž‚Ě“s‡ăCˆČ‰ş‚ł́Ci ‚Ě‘ă‚í‚č‚É m ‚Ə‘‚Ť‚Ü‚ˇB

‚ť‚ą‚ŁCtanƒżk = ak/rCk = 1, 2, c, mCƒż1 + ƒż2 + c + ƒżm = ƒÎnC‚Ĺ‚ˇB

‚ą‚ą‚ŁC‘ć‚P‚Ěƒ|ƒCƒ“ƒg‚Ć‚ľ‚āCtan ‚Ĺ‚Í‚Č‚­ cos ‚Ć sin ‚đŽg‚˘‚Ü‚ˇB

cos(ƒż1 + ƒż2 + c + ƒżm) = cos(ƒÎn) = (-1)^nCsin(ƒż1 + ƒż2 + c + ƒżm) = sin(ƒÎn) = 0

‚ł‚ç‚ɁC‘ć‚Q‚Ěƒ|ƒCƒ“ƒg‚Ć‚ľ‚āC‚ą‚ę‚đ•Ą‘f”‚Ĺ•\‚ľ‚Ü‚ˇB

cos(ƒż1 + ƒż2 + c + ƒżm) + i * sin(ƒż1 + ƒż2 + c + ƒżm) = (-1)^n

ś•Ó‚Í•Ą‘f”‚ĚĎ‚Ş‰ń“]‚đ•\‚ˇ‚ą‚Ć‚Š‚çCcosƒżk + i * sinƒżkCk = 1, 2, c, mC‚ĚĎ‚Ĺ‘‚Ż‚Ü‚ˇB

(cosƒż1 + i * sinƒż1) * (cosƒż2 + i * sinƒż2) * c * (cosƒżm + i * sinƒżm) = (-1)^n

cosƒż1cosƒż2ccosƒżm ‚ 0 ‚Ĺ—ź•Ó‚đŠ„‚Á‚āC

(1 + i * tanƒż1) * (1 + i * tanƒż2) * c * (1 + i * tanƒżm) = (-1)^n/(cosƒż1cosƒż2ccosƒżm)

(1 + i * a1/r) * (1 + i * a2/r) * c * (1 + i * am/r) = (-1)^n/(cosƒż1cosƒż2ccosƒżm)

‚ť‚ą‚ŁCś•Ó‚đŽŔŰ‚É“WŠJ‚ˇ‚ę‚΁C‹•”•”•Ş = 0C‚Š‚çC1/r ‚́C‚ľ‚˝‚Ş‚Á‚Ä r ‚́C•ű’öŽŽ‚Ş“ž‚ç‚ę‚Ü‚ˇB

‚ť‚ľ‚āC‹•”•”•Ş‚́C1/r ‚̊ŒÂ‚ĚĎ‚Ě€‚Ě˜a‚ŁC‚ľ‚Š‚ŕ‘Ώ̐Ť‚Š‚ç a1, a2, c, am ‚ÉŠÖ‚ľ‚Ä‘ÎĚ‚Ĺ‚ˇB

‚‚܂čC1/rC‚ľ‚˝‚Ş‚Á‚Ä rC‚̊ć‚ĚŒW”‚Í a1, a2, c, am ‚̊ŒÂ‚̐ς̊î–{‘Ώ̮Ž‚Ĺ‚ˇB

‚ą‚Ě‚ą‚Ć‚ć‚čC–â‚PF`–â‚RF‚́CŽŸ‚̂悤‚É‚Č‚č‚Ü‚ˇB

m = 3 ‚Ěę‡

i^3 * abc/r^3 + i * (a + b + c)/r = 0

- abc/r^3 + (a + b + c)/r = 0

(a + b + c)r^2 - abc = 0

m = 4 ‚Ěę‡

i^3 * (abc + bcd + cda + dab)/r^3 + i * (a + b + c + d)/r = 0

- (abc + bcd + cda + dab)/r^3 + (a + b + c + d)/r = 0

(a + b + c + d)r^2 - (abc + bcd + cda + dab) = 0

m = 5 ‚Ěę‡

i^5 * abcde/r^5 + i^3 * (abc + abd + abe + acd + ace + ade + bcd + bce + bde + cde)/r^3 + i * (a + b + c + d + e)/r = 0C

abcde/r^5 - (abc + abd + abe + acd + ace + ade + bcd + bce + bde + cde)/r^3 + (a + b + c + d + e)/r = 0C

(a + b + c + d + e)r^4 - (abc + abd + abe + acd + ace + ade + bcd + bce + bde + cde)r^2 + abcde = 0C

‚ą‚̂悤‚ɁC—eˆŐ‚É r ‚Ě•ű’öŽŽ‚đ‹‚ß‚é‚ą‚Ć‚Ş‚Ĺ‚Ť‚Ü‚ˇB

ˆČ‰ş“Ż—l‚É‚ľ‚āC

m ‚ŞŠď”‚Ěę‡

ƒ°[k=0,(m-1)/2]{(-1)^k * (a1 ` am ‚Ě‚¤‚ż 2k+1 ŒÂ‚ĚĎ‚Ě‘ÎĚŽŽ) * r^(m-1-2k)} = 0

m ‚Ş‹ô”‚Ěę‡

ƒ°[k=0,(m-2)/2]{(-1)^k * (a1 ` am ‚Ě‚¤‚ż 2k+1 ŒÂ‚ĚĎ‚Ě‘ÎĚŽŽ) * r^(m-2-2k)} = 0

‚Ćˆę”Ę“I‚Čę‡‚Ě•ű’öŽŽ‚ŕ‘ĺ‚ľ‚˝ŒvŽZ‚Č‚ľ‚É—eˆŐ‚É“ą‚Ż‚Ü‚ˇB

—\‘z‚Ç‚¨‚čCr^2 ‚Ě [(i-1)/2] ŽŸ•ű’öŽŽC‚Ĺ‚ˇ‚ˁB

Ž„‚Ě tan ‚̉Á–@’č—‚É‚ć‚é‰đ–@‚ł́C—\‘z‚͂‚­‚ŕ‚̂́Cm ‚Ş‘ĺ‚Ť‚­‚Č‚é‚ĆŒvŽZ‚Ş‘ĺ•Ď‚Ĺ‚ˇB

•Ą‘f”‚đ‚¤‚Ü‚­Žg‚¤ƒAƒCƒfƒBƒA‚ȂǁC‚ł‚ˇ‚Ş‚ž‚ȁC‚ĆŽv‚˘‚Ü‚ˇB

‚Č‚¨Cr ‚Ě•ű’öŽŽ‚̉đ‚ÉŠÖ‚ľ‚ẮC(‚ż‚ĺ‚Á‚Ć‚ž‚ŻlŽ@)‚ĹŽŚ‚ľ‚˝‚Ć‚¨‚č‚ž‚ĆŽv‚˘‚Ü‚ˇB

 (Š´‘z1)

Ĺ‰‚ɏ‘‚˘‚˝•ű–@‚ł́Ctan ‚̉Á–@’č—‚É‚ć‚é“WŠJ‚ŁCŒ´—“I‚ɂ́C”CˆÓ‚Ě i ‚Ĺ r ‚Ě•ű’öŽŽ‚đ“ą‚Ż‚Ü‚ˇB

‚ľ‚Š‚ľC‚ť‚Ě•ű’öŽŽ‚Í r ‚Ě i-1 ŽŸ•ű’öŽŽ‚É‚Č‚čCˆę”ʂɂ́C“ą‚­‚ą‚Ć‚ŕ‰đ‚­‚ą‚Ć‚ŕ“ď‚ľ‚ť‚¤‚Ĺ‚ˇB

‚ł‚ç‚ɁCi >= 5 ‚ł́Cˆę”Ę‚É•Ą”‚̉đ‚̉”\Ť‚ŕ‚ ‚čC‚ť‚ę‚ç‚Ş}Œ`“I‚É‚Ç‚¤‚Č‚Á‚Ä‚˘‚é‚Ě‚Š‚ĚŠm”F‚ŕ•K—v‚ŁC

‚Č‚Š‚Č‚Š•ĄŽG‚Č‚ą‚Ć‚É‚Č‚č‚ť‚¤‚Ĺ‚ˇB‘ź‚É‚ć‚č‚悢‰đ–@‚Ş‚ ‚é‚Ě‚Š‚ŕ’m‚ę‚Ü‚š‚ńB

—á‚Ś‚΁C•’Ę‚Ě“Ę‘˝ŠpŒ`‚ÉŒŔ‚ę‚΁C–â‚PF‚Ě(•Ę‰đ)‚̂悤‚ɁCÚü‚Ě’ˇ‚ł‚Š‚ç‚ť‚Ě–ĘĎ S ‚đŒvŽZ‚Ĺ‚Ť‚ę‚΁C

r = S/(a1 + a2 + c + ai) ‚ĆŠČ’P‚É‹‚Ü‚č‚Ü‚ˇBł‘˝ŠpŒ`‚Č‚Ç“Á•Ę‚Čę‡‚É‚Í‚ą‚Ě•ű‚Ş‚˘‚˘‚Ĺ‚ˇ‚ˁB

–â‚QF‚Ć–â‚RF‚͘aŽZ‘‚É‚ ‚é‚Ć‚Ě‚ą‚ƁB

‚˝‚žC˜aŽZ‚Ĺ‚Í‹ď‘Ě“I‚Ȑ”’l‚Ş—^‚Ś‚ç‚ę‚Ä‚˘‚é‚ą‚Ć‚Ş‘˝‚˘‚̂ŁC‚Ç‚ą‚Ü‚Ĺˆę”Ę“I‚Č‚Ě‚Ĺ‚ľ‚傤‚ŠB

ˆę•űCŠô‰˝Šw‘厍“T‚ÍŽčŒł‚É‚Č‚˘‚Ě‚ĹŠm”F‚Ĺ‚Ť‚Č‚˘‚Ě‚Ĺ‚ˇ‚ށCˆę”Ę“I‚É‰đ‚Š‚ę‚Ä‚˘‚é‚Ě‚Ĺ‚ľ‚傤‚ŠB

‚ž‚Ć‚ľ‚˝‚çC‚ą‚ą‚ĹŽŚ‚ľ‚˝‰đ–@‚ć‚č‚ŕ‚悢‰đ–@‚Ş‚ ‚é‚Ć‚˘‚¤‚ą‚Ć‚Ĺ‚ˇ‚ˁB

‚¤[‚ށC‚Ç‚¤‚â‚é‚Ě‚Š‚ȁB

 (Š´‘z2)

‚ť‚ĚŒăC…‚Ě—Ź‚ę‚ł‚ń‚Š‚çŠô‰˝Šw‘厍“T‚ɍڂÁ‚Ä‚˘‚é‰đ–@‚đ‹ł‚Ś‚Ä‚ŕ‚炢‚Ü‚ľ‚˝B

‚ť‚ą‚ŁCŽ„‚̉đŽß‚ŕŠÜ‚ß‚Ä‚Ü‚Ć‚ß‚Ä‚Ý‚Ü‚ľ‚˝B

—eˆŐ‚Ɉę”Ę‚Ěę‡‚Ě r ‚Ě•ű’öŽŽ‚Ş‹‚Ü‚Á‚Ä‚ľ‚Ü‚˘‚Ü‚ˇB‚ł‚ˇ‚ŞŠô‰˝Šw‘厍“T‚ɍڂ邞‚Ż‚̉đ–@‚Ĺ‚ˇ‚ˁB

ƒ…‚Ě—Ź‚ęF•‚Š‚č‚Ü‚ľ‚˝B‚˛‹ę˜J‚ÉŠ´ŽÓ‚ľ‚Ü‚ˇB‚ ‚č‚Ş‚Ć‚¤‚˛‚´‚˘‚Ü‚ˇ„

NO2u•l“c–ž–¤v         08/06 10Žž10•Ş@ŽóM  XV 8/30

–â‚P

3241 

@@˘‚`‚P‚`‚Q‚`‚R˘‚h‚`‚P‚`‚Q{˘‚h‚`‚Q‚`‚R{˘‚h‚`‚R‚`‚P
@@@@@@‚P^‚QE‚`‚P‚`‚QE‚h‚a‚P{‚P^‚QE‚`‚Q‚`‚RE‚h‚a‚Q{‚P^‚QE‚`‚R‚`‚PE‚h‚a‚R
@@@@@@‚P^‚QE(‚{‚‚)E‚’{‚P^‚QE(‚‚{‚ƒ)E‚’{‚P^‚QE(‚ƒ{‚)E‚’
@@@@@@(‚{‚‚{‚ƒ)‚’
@‚Ü‚˝C‚“(‚`‚P‚`‚Q{‚`‚Q‚`‚R{‚`‚R‚`‚P)^‚Q‚{‚‚{‚ƒ‚Ć‚ˇ‚é‚ƁCƒwƒƒ“‚ĚŒöŽŽ‚ć‚čC
@@˘‚`‚P‚`‚Q‚`‚R{‚“(‚“|‚`‚P‚`‚Q)(‚“|‚`‚Q‚`‚R)(‚“|‚`‚R‚`‚P)}‚P^‚Q
@@@@@@[(‚{‚‚{‚ƒ){(‚{‚‚{‚ƒ)|(‚{‚‚)}{(‚{‚‚{‚ƒ)|(‚‚{‚ƒ)}{(‚{‚‚{‚ƒ)|(‚ƒ{‚)}]‚P^‚Q
@@@@@@{(‚{‚‚{‚ƒ)‚‚‚‚ƒ}‚P^‚Q
@@@@@@(‚{‚‚{‚ƒ)‚’
@@ˆ‚’{‚‚‚‚ƒ^(‚{‚‚{‚ƒ)}‚P^‚QEEE(“š)

–â‚Q

3242

@ŽlŠpŒ`‚`‚P‚`‚Q‚`‚R‚`‚S˘‚h‚`‚P‚`‚Q{˘‚h‚`‚Q‚`‚R{˘‚h‚`‚R‚`‚S{˘‚h‚`‚S‚`‚P
@@@@@@‚P^‚QE‚`‚P‚`‚QE‚h‚a‚P{‚P^‚QE‚`‚Q‚`‚RE‚h‚a‚Q{‚P^‚QE‚`‚R‚`‚SE‚h‚a‚R{‚P^‚QE‚`‚S‚`‚PE‚h‚a‚S
@@@@@@‚P^‚QE(‚{‚‚)E‚’{‚P^‚QE(‚‚{‚ƒ)E‚’{‚P^‚QE(‚ƒ{‚„)E‚’{‚P^‚QE(‚„{‚)E‚’
@@@@@@(‚{‚‚{‚ƒ{‚„)‚’
@‚Ü‚˝C‚“(‚`‚P‚`‚Q{‚`‚Q‚`‚R{‚`‚R‚`‚S{‚`‚S‚`‚P)^‚Q‚{‚‚{‚ƒ{‚„‚Ć‚ˇ‚éD
@ŽlŠpŒ`‚`‚P‚`‚Q‚`‚R‚`‚S‚͉~‚h‚ÉŠOÚ‚ľ‚Ä‚˘‚é‚̂ŁCƒuƒ‰[ƒ}ƒOƒvƒ^‚ĚŒöŽŽ‚ć‚čC
@@ŽlŠpŒ`‚`‚P‚`‚Q‚`‚R‚`‚S{(‚“|‚`‚P‚`‚Q)(‚“|‚`‚Q‚`‚R)(‚“|‚`‚R‚`‚S)(‚“|‚`‚S‚`‚P)}‚P^‚Q
@@@@@@[{(‚{‚‚{‚ƒ{‚„)|(‚{‚‚)}{(‚{‚‚{‚ƒ{‚„)|(‚‚{‚ƒ)}{(‚{‚‚{‚ƒ{‚„)|(‚ƒ{‚„)}{(‚{‚‚{‚ƒ{‚„)|(‚„{‚)}]‚P^‚Q
@@@@@@{(‚‚{‚ƒ)(‚ƒ{‚„)(‚„{‚)}‚P^‚Q
@@@@@@(‚{‚‚{‚ƒ{‚„)‚’
@@ˆ‚’{(‚{‚‚)(‚‚{‚ƒ)(‚ƒ{‚„)(‚„{‚)}‚P^‚Q^(‚{‚‚{‚ƒ{‚„)EEE(“š)

–â‚R

3243

@Ú‚`‚P‚h‚a‚PƒĆ‚P‚Ć‚ˇ‚éD
@˘‚h‚`‚P‚a‚P‚É‚¨‚˘‚āCtanƒĆ‚P‚^‚’
@@ˆƒĆ‚Parctan(‚^‚’)
@Ú‚a‚T‚h‚a‚P‚QƒĆ‚P‚Ĺ‚ ‚čC“Ż—l‚ɁC
@@Ú‚a‚P‚h‚a‚Q‚QƒĆ‚QCÚ‚a‚Q‚h‚a‚R‚QƒĆ‚RCÚ‚a‚R‚h‚a‚S‚QƒĆ‚SCÚ‚a‚S‚h‚a‚T‚QƒĆ‚T
‚Ć‚ˇ‚é‚ƁC
@@‚Q(ƒĆ‚P{ƒĆ‚Q{ƒĆ‚R{ƒĆ‚S{ƒĆ‚T)‚QƒÎ
@@ˆarctan(‚^‚’){arctan(‚‚^‚’){arctan(‚ƒ^‚’){arctan(‚„^‚’){arctan(‚…^‚’)ƒÎEEE(“š)

@‘ź‚Ě‘˝ŠpŒ`‚Ěę‡‚ŕ“Ż—l‚ɐŹ—§‚ˇ‚éD
@ŽŔŰC‚P•Ó‚Ě’ˇ‚ł‚Ş‚P‚̐łŽOŠpŒ`‚É‚¨‚˘‚āC‚‚‚‚ƒ‚P^‚Q‚Ĺ‚ ‚é‚̂ŁC
@@‚Rarctan{(‚P^‚Q)^‚’}ƒÎ
@@ˆartan{‚P^(‚Q‚’)}ƒÎ^‚R
@@ˆ‚P^(‚Q‚’)tan(ƒÎ^‚R)ă‚R
@@ˆ‚’‚P^(‚Qă‚R)
@–â‚P‚ĚŒ‹‰Ę‚Š‚çC
@@‚’[{(‚P^‚Q)(‚P^‚Q)(‚P^‚Q)}^(‚P^‚Q{‚P^‚Q{‚P^‚Q)]‚P^‚Q‚P^(‚Qă‚R)

@‚P•Ó‚Ě’ˇ‚ł‚Ş‚P‚̐ł•űŒ`‚É‚¨‚˘‚āC‚‚‚‚ƒ‚„‚P^‚Q‚Ĺ‚ ‚é‚̂ŁC
@@‚Sarctan{(‚P^‚Q)^‚’}ƒÎ
@@ˆartan{‚P^(‚Q‚’)}ƒÎ^‚S
@@ˆ‚P^(‚Q‚’)tan(ƒÎ^‚S)‚P
@@ˆ‚’‚P^‚Q
@–â‚Q‚ĚŒ‹‰Ę‚Š‚çC
@@‚’{(‚P^‚Q{‚P^‚Q)(‚P^‚Q{‚P^‚Q)(‚P^‚Q{‚P^‚Q)(‚P^‚Q{‚P^‚Q)}‚P^‚Q^(‚P^‚Q{‚P^‚Q{‚P^‚Q{‚P^‚Q)‚P^‚Q

NO3u“ń“x’Đ‚Ż”’Řv     08/07 21Žž27•Ş@ŽóM 

u“ń“x’Đ‚Ż”’Řv     08/08 18Žž01•Ş@ŽóM  XV 8/30

‘ć324‰ń”Šw“I‚ȉž•ĺ–â‘č ‚Ě‰đ“š


(
“š)
–â1Fr=ă(a*b*c/(a+b+c))
–â2Fr=ă((a*b*c+a*b*d+a*c*d+b*c*d)/(a+b+c+d))
–â3Fr ‚Ě–ž‚˝‚ˇ•ű’öŽŽ‚́C
a*b*c*d*e-(a*b*c+a*b*d+a*b*e+a*c*d+a*c*e+a*d*e+b*c*d+b*c*e+b*d*e+c*d*e)*r^2+(a+b+c+d+e)*r^4=0


3
ˆČă‚̐Ž” n ‚ɑ΂ľ‚āC
’†SOC”źŒa r ‚̉~‚ÉŠOÚ‚ˇ‚é n ŠpŒ` A[1]A[2]cA[n] ‚đl‚Ś‚éD
•Ó A[i]A[i+1] ‚Ɖ~‚Ƃ̐ړ_‚đ B[i] ‚Ć‚ľCü•ŞA[i]B[i]‚Ě’ˇ‚ł‚đa[i]‚Ć‚ˇ‚éD
(i=1,2,
c ,n  ‚˝‚ž‚ľCA[n+1] ‚Í A[1]‚ƍl‚Ś‚éD)
‚ą‚Ě‚Ć‚ŤC
tan(
ÚOA[i]B[i]) = r/a[i]
‚Ć‚Č‚Á‚Ä‚˘‚éD


‚ą‚ą‚Ĺn‚đ”CˆÓ‚̐łŽ”‚Ć‚ľ‚čl‚Ś‚éD
x
‚Ě‘˝€ŽŽ f(x) ‚Ěx^n‚ĚŒW”‚đ [x^n]f(x) ‚Ć•\‚ˇ‚ą‚Ć‚É‚ˇ‚éD
n
ŒÂ‚ĚŽŔ” ƒż[1]Cƒż[2]C c Cƒż[n] ‚¨‚ć‚Ń ”CˆÓ‚̐Ž” k ‚ɑ΂ľ‚āC
s(n,k)
‚đŽŸ‚Ě‚ć‚¤‚É’č‹`‚ˇ‚éD
s(n,k)=[x^k]
ƒŽ[i=1`n](1+x*tan(ƒż[i]))D
(
‚ľ‚˝‚Ş‚Á‚āCkƒ0 ‚¨‚ć‚Ń k„n ‚Ě‚Ć‚Ť‚ɂ́Cs(n,k)=0 ‚Ć‚Č‚éD)
—á‚Ś‚În=3‚Ě‚Ć‚ŤCx ‚Ě‘˝€ŽŽ
ƒŽ[i=1`3](1+x*tan(ƒż[i]))=(1+x*tan(ƒż[1]))*(1+x*tan(ƒż[2]))*(1+x*tan(ƒż[3]))
‚đ“WŠJ‚ľ‚˝‚Ć‚Ť‚Ěx^2‚ĚŒW”‚Í
tan(
ƒż[1])*tan(ƒż[2])+tan(ƒż[1])*tan(ƒż[3])+tan(ƒż[2])*tan(ƒż[3])
‚Ĺ‚ ‚é‚̂ŁC
s(3,2)=tan(
ƒż[1])*tan(ƒż[2])+tan(ƒż[1])*tan(ƒż[3])+tan(ƒż[2])*tan(ƒż[3])D


(
•â‘č)
”CˆÓ‚̐łŽ”n‚ɑ΂ľ‚āCŽŸ‚Ě2‚‚̓™ŽŽ‚ސŹ‚č—§‚D
sin(
ƒ°[i=1`n]ƒż[i])=(ƒŽ[i=1`n]cos(ƒż[i]))*(ƒ°[i=0`‡]((-1)^i)*s(n,2*i+1))C
cos(
ƒ°[i=1`n]ƒż[i])=(ƒŽ[i=1`n]cos(ƒż[i]))*(ƒ°[i=0`‡]((-1)^i)*s(n,2*i))D


(
Ř–ž)
Ř–ž‚Í n ‚ÉŠÖ‚ˇ‚é‹A”[–@‚É‚ć‚éD


‚Ü‚¸ŽŸ‚Ě‚ą‚Ć‚É’ˆÓ‚ˇ‚éD
ƒŽ[k=1`n+1](1+x*tan(ƒż[k]))
=
ƒŽ[k=1`n](1+x*tan(ƒż[k])) + (ƒŽ[k=1`n](1+x*tan(ƒż[k])))*(x*tan(ƒż[n+1]))
‚Ĺ‚ ‚é‚̂ŁC
s(n+1,2*i)=s(n,2*i)+s(n,2*i-1)*tan(
ƒż[n+1])@‚¨‚ć‚Ń
s(n+1,2*i+1)=s(n,2*i+1)+s(n,2*i)*tan(
ƒż[n+1])
‚ސŹ‚č—§‚D
‚ą‚ę‚ç‚Ě“™ŽŽ‚Ě—ź•Ó‚É (-1)^i ‚đŠ|‚Ż‚āC‚ł‚ç‚É—ź•Ó‚Ě˜a ƒ°[i=0`‡] ‚đl‚Ś‚ę‚΁C
ƒ°[i=0`‡]((-1)^i)*s(n+1,2*i)
=
ƒ°[i=0`‡]((-1)^i)*s(n,2*i)+(ƒ°[i=0`‡]((-1)^i)*s(n,2*i-1))*tan(ƒż[n+1]) ---(™)
‚¨‚ć‚Ń
ƒ°[i=0`‡]((-1)^i)*s(n+1,2*i+1)
=
ƒ°[i=0`‡]((-1)^i)*s(n,2*i+1)+(ƒ°[i=0`‡]((-1)^i)*s(n,2*i))*tan(ƒż[n+1]) ---(š)
‚ސŹ‚č—§‚D


n=1
‚Ě‚Ć‚Ť‚Í(•â‘č)‚Ě2‚‚̓™ŽŽ‚͐ł‚ľ‚˘D
n
ˆČ‰ş‚Ě”CˆÓ‚̐łŽ”‚ɑ΂ľ‚Ä(•â‘č)‚Ě2‚‚̓™ŽŽ‚ސŹ‚č—§‚Á‚Ä‚˘‚é‚Ɖź’股‚éD‚ą‚Ě‚Ć‚ŤC
sin(
ƒ°[i=1`n+1]ƒż[i])
=sin(
ƒ°[i=1`n]ƒż[i]+ƒż[n+1])
=sin(
ƒ°[i=1`n]ƒż[i])*cos(ƒż[n+1]) + cos(ƒ°[i=1`n]ƒż[i])*sin(ƒż[n+1])
=(
ƒŽ[i=1`n]cos(ƒż[i]))*(ƒ°[i=0`‡]((-1)^i)*s(n,2*i+1))*cos(ƒż[n+1])
+(
ƒŽ[i=1`n]cos(ƒż[i]))*(ƒ°[i=0`‡]((-1)^i)*s(n,2*i))*tan(ƒż[n+1])*cos(ƒż[n+1])
=(
ƒŽ[i=1`n+1]cos(ƒż[i]))*( ƒ°[i=0`‡]((-1)^i)*s(n,2*i+1)+ƒ°[i=0`‡]((-1)^i)*s(n,2*i)*tan(ƒż[n+1]) )
=(
ƒŽ[i=1`n+1]cos(ƒż[i]))*(ƒ°[i=0`‡]((-1)^i)*s(n+1,2*i+1))  (ć(š))


‚ł‚ç‚ɁC
cos(
ƒ°[i=1`n+1]ƒż[i])
=cos(
ƒ°[i=1`n]ƒż[i]+ƒż[n+1])
=cos(
ƒ°[i=1`n]ƒż[i])*cos(ƒż[n+1]) - sin(ƒ°[i=1`n]ƒż[i])*sin(ƒż[n+1])
=(
ƒŽ[i=1`n]cos(ƒż[i]))*(ƒ°[i=0`‡]((-1)^i)*s(n,2*i))*cos(ƒż[n+1])
-(
ƒŽ[i=1`n]cos(ƒż[i]))*(ƒ°[i=0`‡]((-1)^i)*s(n,2*i+1))*tan(ƒż[n+1])*cos(ƒż[n+1])
=(
ƒŽ[i=1`n+1]cos(ƒż[i]))*(ƒ°[i=0`‡]((-1)^i)*s(n,2*i)-ƒ°[i=0`‡]((-1)^i)*s(n,2*i+1)*tan(ƒż[n+1]))
=(
ƒŽ[i=1`n+1]cos(ƒż[i]))*(ƒ°[i=0`‡]((-1)^i)*s(n,2*i)+ƒ°[i=0`‡]((-1)^i)*s(n,2*i-1)*tan(ƒż[n+1]))
=(
ƒŽ[i=1`n+1]cos(ƒż[i]))*(ƒ°[i=0`‡]((-1)^i)*s(n+1,2*i))  (ć(™))
‚ć‚Á‚āCn+1‚Ě‚Ć‚Ť‚É‚ŕ(•â‘č)‚Ě2‚‚̓™ŽŽ‚͐ł‚ľ‚˘D(Ř–žI)


‚˘‚܁C
ƒż[i]=ÚOA[i]B[i] (i=1,2, c ,n) ‚Ć‚ˇ‚éD
s(n,k)=[x^k]
ƒŽ[i=1`n](1+x*tan(ƒż[i]))
=[x^k]
ƒŽ[i=1`n](1+x*r/a[i])
‚Ĺ‚ ‚éD
‚ą‚Ě‚Ć‚ŤCƒ°[i=1`n]ƒż[i]=ƒÎ*(n-2)/2D
‚ć‚Á‚āC
n
‚ŞŠď”‚Ě‚Ć‚Ť‚́Ccos(ƒ°[i=1`n]ƒż[i])=0 ‚Ĺ‚ ‚čC
(
•â‘č)‚ć‚čC ƒ°[i=0`‡]((-1)^i)*s(n,2*i)=0 ‚Ć‚Č‚é‚ą‚Ć‚Ş‚í‚Š‚éD
‚Ü‚˝Cn‚Ş‹ô”‚Ě‚Ć‚Ť‚́Csin(ƒ°[i=1`n]ƒż[i])=0 ‚Ĺ‚ ‚čC
(
•â‘č)‚ć‚čCƒ°[i=0`‡]((-1)^i)*s(n,2*i+1)=0 ‚Ć‚Č‚é‚ą‚Ć‚Ş‚í‚Š‚éD


n=3
‚Ě‚Ć‚Ť‚́C
ƒ°[i=0`‡]((-1)^i)*s(3,2*i)=0
Ě s(3,0)-s(3,2)=0
Ě 1-(r/a[1])*(r/a[2])-(r/a[2])*(r/a[3])-(r/a[3])*(r/a[1])=0
Ě a[1]*a[2]*a[3]-(r^2)*(a[3]+a[1]+a[2])=0
Ě r=(a[1]*a[2]*a[3]/(a[1]+a[2]+a[3]))^(1/2)D


n=4
‚Ě‚Ć‚Ť‚́C
ƒ°[i=0`‡]((-1)^i)*s(4,2*i+1)=0
Ě s(4,1)-s(4,3)=0
Ě r*(1/a[1]+1/a[2]+1/a[3]+1/a[4])-r^3*(1/(a[1]*a[2]*a[3])+1/(a[1]*a[2]*a[4])+
1/(a[1]*a[3]*a[4])+1/(a[2]*a[3]*a[4]))=0
Ě r=((a[1]*a[2]*a[3]+a[1]*a[2]*a[4]+a[1]*a[3]*a[4]+a[2]*a[3]*a[4])/(a[1]+a[2]+a[3]+a[4]))^(1/2).


n=5
‚Ě‚Ć‚Ť‚́C
ƒ°[i=0`‡]((-1)^i)*s(5,2*i)=0

Ě s(5,0)-s(5,2)+s(5,4)=0

Ě 1-(r^2)*(1/(a[1]*a[2])+1/(a[1]*a[3])+1/(a[1]*a[4])+1/(a[1]*a[5])+1/(a[2]*a[3])
+1/(a[2]*a[4])+1/(a[2]*a[5])+1/(a[3]*a[4])+1/(a[3]*a[5])+1/(a[4]*a[5]))
+(r^4)*(1/(a[1]*a[2]*a[3]*a[4])+1/(a[1]*a[2]*a[3]*a[5])+1/(a[1]*a[2]*a[4]*a[5])
+1/(a[1]*a[3]*a[4]*a[5])+1/(a[2]*a[3]*a[4]*a[5]))=0

Ë a[1]*a[2]*a[3]*a[4]*a[5]
-(r^2)*(a[1]*a[2]*a[3]+a[1]*a[2]*a[4]+a[1]*a[2]*a[5]+a[1]*a[3]*a[4]+a[1]*a[3]*a[5]
+a[1]*a[4]*a[5]+a[2]*a[3]*a[4]+a[2]*a[3]*a[5]+a[2]*a[4]*a[5]+a[3]*a[4]*a[5])
+(r^4)*(a[1]+a[2]+a[3]+a[4]+a[5])=0


ˆČ‰ş a[i] ‚đ’P‚É ai ‚Ć‚Š‚­D
@
n=6
‚Ě‚Ć‚Ť‚́C
ƒ°[i=0`‡]((-1)^i)*s(6,2*i+1)=0
Ě s(6,1)-s(6,3)+s(6,5)=0
Ë(a1*a2*a3*a4*a5+a1*a2*a3*a4*a6+a1*a2*a3*a5*a6+a1*a2*a4*a5*a6+a1*a3*a4*a5*a6
+a2*a3*a4*a5*a6)*r-(a1*a2*a3+a1*a2*a4+a1*a2*a5+a1*a2*a6+a1*a3*a4+a1*a3*a5
+a1*a3*a6+a1*a4*a5+a1*a4*a6+a1*a5*a6+a2*a3*a4+a2*a3*a5+a2*a3*a6+a2*a4*a5+a2*a4*a6
+a2*a5*a6+a3*a4*a5+a3*a4*a6+a3*a5*a6+a4*a5*a6)*r^3+(a1+a2+a3+a4+a5+a6)*r^5=0


n=7
‚Ě‚Ć‚Ť‚́C
ƒ°[i=0`‡]((-1)^i)*s(7,2*i)=0
Ě s(7,0)-s(7,2)+s(7,4)-s(7,6)=0
Ëa1*a2*a3*a4*a5*a6*a7
-(a1*a2*a3*a4*a5+a1*a2*a3*a4*a6+a1*a2*a3*a4*a7+a1*a2*a3*a5*a6+a1*a2*a3*a5*a7
+a1*a2*a3*a6*a7+a1*a2*a4*a5*a6+a1*a2*a4*a5*a7+a1*a2*a4*a6*a7+a1*a2*a5*a6*a7
+a1*a3*a4*a5*a6+a1*a3*a4*a5*a7+a1*a3*a4*a6*a7+a1*a3*a5*a6*a7+a1*a4*a5*a6*a7
+a2*a3*a4*a5*a6+a2*a3*a4*a5*a7+a2*a3*a4*a6*a7+a2*a3*a5*a6*a7+a2*a4*a5*a6*a7
+a3*a4*a5*a6*a7)*r^2
+(a1*a2*a3+a1*a2*a4+a1*a2*a5+a1*a2*a6+a1*a2*a7+a1*a3*a4+a1*a3*a5+a1*a3*a6
+a1*a3*a7+a1*a4*a5+a1*a4*a6+a1*a4*a7+a1*a5*a6+a1*a5*a7+a1*a6*a7+a2*a3*a4
+a2*a3*a5+a2*a3*a6+a2*a3*a7+a2*a4*a5+a2*a4*a6+a2*a4*a7+a2*a5*a6+a2*a5*a7
+a2*a6*a7+a3*a4*a5+a3*a4*a6+a3*a4*a7+a3*a5*a6+a3*a5*a7+a3*a6*a7+a4*a5*a6
+a4*a5*a7+a4*a6*a7+a5*a6*a7)*r^4
-(a1+a2+a3+a4+a5+a6+a7)*r^6=0

 

‚Ć‚˘‚¤‚Ó‚¤‚É‚Č‚éB

 

 

˜aŽZ‰Ć‚Ć‚˘‚¤‚Ě‚ÍŒ‹\–Ę”’‚˘–â‘č‚đl‚Ś‚Ä‚˘‚˝‚Ě‚Ĺ‚ˇ‚ˁD
”Ţ‚ç‚Í‚˘‚Á‚˝ ‚˘‚ǂ̂悤‚É‚ľ‚Ä‚ą‚Ě–â‘č‚đ‰đ‚˘‚Ä‚˘‚˝‚Ě‚Ĺ‚ľ‚傤‚ŠH
‚Š‚Č‚č‹ť–Ą‚Ş‚í‚˘‚Ä‚Ť‚Ü‚ľ‚˝D

NO4u‘‹N‚Ť‚Ě‚¨‚ś‚ł‚ńv 08/09 16Žž53•Ş@ŽóM  XV 8/30

324‰đ“š@‘‹N‚Ť‚Ě‚¨‚ś‚ł‚ń

 

–â‘č‚P

ŽOŠpŒ`‚Ě3•Ó‚Ě’ˇ‚ł‚Ş•Ş‚Š‚Á‚Ä‚˘‚é‚Ć‚ŤA‚ť‚̖ʐĎS‚̓wƒƒ“‚ĚŒöŽŽ‚Š‚çA ‚Ĺ‚ˇBi}1j

}2‚ĹS˘A1A2A3˘OA1A2{˘OA2A3{˘OA3A1‚ƍl‚Ś‚é‚ƁA

ˆę•űAƒwƒƒ“‚ĚŒöŽŽ‚ōl‚Ś‚é‚ƁA

“ń‚Â‚ĚŒ‹‰Ę‚Š‚çA

‚ą‚ĚŽŽ‚́AaAbAc‚ɂ‚˘‚Ä‘ÎĚ‚Ĺ‚ˇB

 

 

–â‘č‚Q

ŽŸ‚ɁA}2‚đ‚ŕ‚Ć‚É‚ľA}3‚̂悤‚ɐV‚˝‚ɁAÚüA3A4‚đl‚Ś‚Ü‚ˇB

Ą‚Ü‚Ĺ‚ĚA3‚ÍA3fAB3‚ÍB4A’ˇ‚łc‚Ícf‚Ć‚ľ‚Ü‚ˇB

S A1A2A3A4˘OA1A2{˘OA2A3{˘OA3A4{˘OA4A1‚ƍl‚Ś‚é‚ƁA

ˆę•űAS˘A1A2A3f|˘A3fA3A4‚ƍl‚Ś‚é‚ƁA

‚Ȃ̂ŁA

ĽĽĽ(1)

‚Ć‚Č‚č‚Ü‚ˇB

 

‚ł‚āA OB2A3fB4‚đ}4‚É”˛‚Ťo‚ľ‚Ü‚ˇB

 OB2A3fB42~˘OB2A3fcf‚’ĽĽĽ(2)

ˆę•űA

 OB2A3fB4 OB2A3B3{ OB3A4B4{˘A3fA3A4

‚Ć‚ˇ‚é‚ƁA

(2)A(3)‚đ˜A—§‚ł‚š‚é‚ƁA

‚ą‚ą‚ŁA}4‚đŒŠ‚ÄAcfc{d ‚Í‚Č‚˘‚̂ŁA

‚ą‚ę‚đ(1)‚É‘ă“ü‚ľ‚āA

—ź•Ó2ć‚ľ‚āA

‰ş‚ĚŽŽ‚́AaAbAcAd‚ɂ‚˘‚Ä‘ÎĚ‚Ĺ‚Č‚˘‚Ě‚Ĺ

 

 

–â‘č‚R

l‚Ś•ű‚́AĄ‚Ü‚Ĺ‚Ć“Ż‚ś‚Ĺ‚ˇB

ŒÜŠpŒ`A1A2A3A4A5‚̖ʐĎS‚́A”źŒar‚đ—p‚˘‚é‚ƁA

ˆę•űA A1A2A3A4f‚̖ʐĎU‚Š‚灢A4fA4A5‚̖ʐĎTˆř‚˘‚Ä‚ŕ‹‚Ü‚é‚̂ŁA

‚ž‚Š‚ç•ű’öŽŽ‚Ěˆę‚‚́A

 

ŽŸ‚ɁA OB3A4fB5‚̖ʐςđl‚Ś‚Ä‚ŕ‚¤ˆę‚‚̕ű’öŽŽ‚́A

 

(5)‚Š‚çdf‚ɂ‚˘‚Ä‰đ‚ŤA(4)‚É‘ă“ü‚ľ‚Är‚ɂ‚˘‚Ä‰đ‚­‚ą‚Ć‚É‚Č‚č‚Ü‚ˇB

ŒvŽZ‚Í‚ľ‚Ü‚š‚ń‚ށAŽŸ‚Ě“š‚Ś‚Ş—\‘z‚ł‚ę‚Ü‚ˇB

iaAbAcAdAe‚Ě‘ÎĚŽŽj

ƒ…‚Ě—Ź‚ęF–â‘č‚R‚ĚŒ‹‰Ę‚É‚ÍŒë‚č‚Ş‚ ‚č‚Ü‚ľ‚˝‚̂ŁA‰ş‚É’ůł‚Ş‚ ‚č‚Ü‚ˇB„

NO5u‘‹N‚Ť‚Ě‚¨‚ś‚ł‚ńv 08/11 21Žž21•Ş@ŽóM  XV 8/30@

324_2‰đ“š@‘‹N‚Ť‚Ě‚¨‚ś‚ł‚ń

 

€”ő

œłÚtanƒĆ‚ɂ‚˘‚ẮA‰Á–@’č—‚đŠm”F‚ľ‚Ä‚¨‚Ť‚Ü‚ˇB

Šp‚Ş3‚A4‚‚̂ŕ‚Ý‚Ä‚¨‚Ť‚Ü‚ˇB

 

 

œnŠpŒ`‚Ě“ŕŠp‚Ě˜a‚́An(ƒÎ|2)‚Ĺ‚ˇB

 

 

–â‘č‚P

ÚA1AAÚA2BAÚA3C‚Ć•\‚ˇ‚ą‚Ć‚É‚ľ‚Ü‚ˇB

 

}‚ć‚čA

‚Ü‚˝AA{B{CƒÎ‚Ȃ̂ŁA

‚ć‚Á‚āA

 

 

–â‘č‚Q

l‚Ś•ű‚́A–â‘č‚P‚Ć“Ż—l‚Ĺ‚ˇB

 

‚Ü‚˝AA{B{C{D2ƒÎ‚Ȃ̂ŁA

‚ć‚Á‚āA

 

 

 

–â‘č‚R

‚Ü‚˝AA{B{C{D{E3ƒÎ‚Ȃ̂ŁA

‚ć‚Á‚āA

 

 

 

‚ą‚ę‚ŞAr‚đ‹‚ß‚é•ű’öŽŽ‚Ĺ‚ˇB

 

ŒöŽŽ‚đ‚ ‚Ä‚Í‚ß‚é‚ƁA

 

 

‚Ć‚Č‚č‚Ü‚ˇB

Ş†‚Ě’†‚Ě  ‚́A0‚É‚Č‚ç‚Č‚˘‚̂ŁA‘O‚Ě‰đ“š‚Ĺ‘‚˘‚˝—\‘z‚Ě

‚ÍŒë‚č‚ž‚Ć‚˘‚¤‚ą‚Ć‚É‚Č‚č‚Ü‚ˇB