•˝Ź‚Q‚V”N‚XŒŽ‚Q‚V“ú

[—Ź‚ꐯ]

@@@@@‘ć325‰ń”Šw“I‚ȉž•ĺ‰đ“š

@@@@@@ƒ‰đ“š•ĺWŠúŠÔF8ŒŽ30“ú`9ŒŽ27“ú„

mÔ°şĚ߼ÍŢŮÇ°˛‚Ě–łŒŔ‹‰”n

u”Šw’´â“ď–âv“ú–{ŽŔ‹Ćo”ŎЁiŹ–ě“c”Žˆę’˜j‚đ“Ç‚ń‚Ĺ‚˘‚āAƒ„[ƒRƒvEƒxƒ‹ƒk[ƒCi1654”N`1705”Nj‚މş‹L‚Ě–łŒŔ‹‰”‚Ě’l‚đ‹‚ß‚Ä‚˘‚˝‚Ə‘‚˘‚Ä‚ ‚č‚Ü‚ľ‚˝B

325zu@

ŽQlF”Ţ‚Ě’í‚Ƀˆƒnƒ“Eƒxƒ‹ƒk[ƒCi1667”N`1748”Nj‚Ş‚˘‚Ü‚ˇBƒIƒCƒ‰[i1707`1783”Nj‚̉śŽt‚É’í‚Ěƒˆƒnƒ“‚Ş‚˘‚Ü‚ˇB

NO1u“ń“x’Đ‚Ż”’Řv     08/30 09Žž49•Ş@ŽóM  XV 9/27

‘ć325‰ń”Šw“I‚ȉž•ĺ–â‘č‚̉𓚂𑗂č‚Ü‚ˇD
‚ć‚ë‚ľ‚­‚¨Šč‚˘‚ľ‚Ü‚ˇD


(
“š)
–â1: 2
–â2: 6
–â3: 26
–â4: 150


łŽ” n ‚ƐŽ” k (0…k) ‚ɑ΂ľ‚āCA(n,k)‚đŽŸ‚Ě‚ć‚¤‚É’č‹`‚ˇ‚éD
A(n,k)=
ƒ°[j=0..k]((-1)^j)*comb(n+1,j)*(k-j)^n.

(k>n‚Ě‚Ć‚Ť‚Í A(n,k)=0‚Ć‚Č‚éD)
‚ą‚Ě‚Ć‚ŤCƒ°[k†0]A(n,k)*t^k ‚ÍŽŸ‚̂悤‚É‚Č‚éD

 

ƒ°[k†0]A(n,k)*t^k
=
ƒ°[k†0](ƒ°[j=0..k]((-1)^j)*comb(n+1,j)*(k-j)^n)*t^k
=
ƒ°[k†0](ƒ°[j=0..k]((-1)^(k-j))*comb(n+1,k-j)*j^n)*t^k
=
ƒ°[j†0]ƒ°[k†j]((-1)^(k-j))*comb(n+1,k-j)*j^n)*t^k
=
ƒ°[j†0](j^n)*(t^j)ƒ°[k†j]comb(n+1,k-j)*t^(k-j)
=
ƒ°[j†0](j^n)*(t^j)*(1-t)^(n+1).

 

‚ć‚Á‚āC
ƒ°[j†0](j^n)*(t^j) = (1-t)^(-n-1)*ƒ°[k†0]A(n,k)*t^k.

 

”CˆÓ‚̐łŽ” m ‚ɑ΂ľ‚āC
f(m)=
ƒ°[k†1](k^m)/(2^k) ‚Ć‚ˇ‚é‚ƁC
f(m)=
ƒ°[k†0](k^m)/(2^k)
=
ƒ°[j†0](j^m)*((1/2)^j)
=(1-1/2)^(-m-1)*
ƒ°[k†0]A(m,k)*(1/2)^k
=(1/2)^(-m-1)*
ƒ°[k=0..m](1/2)^k*(ƒ°[j=0..k]((-1)^j)*comb(m+1,j)*(k-j)^m).

‚ą‚ĚŒvŽZŽŽ‚đŽg‚Á‚ÄŒvŽZ‚ˇ‚é‚ƁC
f(1)=2,f(2)=6,f(3)=26,f(4)=150.

 

‚Ü‚˝—á‚Ś‚΁C
f(100)
=11133509631364650299699656360843806862971167990688281554425819235539210812744
137555815269127221215916681393895912461647364346849254775983678654845346975177
59492540384054716630.

 

NO2uuchinyanv         08/30 16Žž11•Ş@ŽóM 

uuchinyanv         09/04 11Žž38•Ş@ŽóM  XV 9/27

­‚ľˆę”Ę“I‚ɍl‚Ś‚Ä‚Ý‚Ü‚ˇB

ˆČ‰ş‚ł́CkCn ‚đ 1 ˆČă‚̐Ž”Cm ‚đ 0 ˆČă‚̐Ž”Cr ‚đ -1 < r < 1 ‚ĚŽŔ”‚Ć‚ľ‚Ü‚ˇB

‚Ü‚¸Clim[n->‡]{n^m * r^n} = 0C‚Ĺ‚ˇB

‚ą‚ę‚́Cr = 0 ‚Ěę‡‚Í–ž‚ç‚Š‚Ȃ̂ŁC0 < |r| < 1 ‚đŽŚ‚š‚΂˘‚˘‚Ĺ‚ˇB

‚ť‚ą‚ŁCa ‚𐳂̎Ŕ”‚Ć‚ľ‚āC|r| = 1/(1 + a)C(1 + a)^n = ƒ°[i=0,n]{nCi * a^i}C‚Ć‚Č‚čC

n ‚Ş m ‚ć‚č‚ŕ\•Ş‚É‘ĺ‚Ť‚˘ł‚̐Ž”‚Ěę‡‚ɂ́C

(1 + a)^n > nC(m+1) * a^(m+1) = n(n-1)(n-2)c(n-m)/(m+1)! * a^(m+1)C

0 < n^m * |r|^n = n^m/(1 + a)^n < n^m/(nC(m+1) * a^(m+1)) = (m+1)!/a^(m+1) * 1/(n(1 - 1/n)(1 - 2/n)c(1 - m/n))C

0 <= lim[n->‡]{n^m * |r|^n} <= (m+1)!/a^(m+1) * lim[n->‡]{1/n} * lim[n->‡]{1/(1 - 1/n)(1 - 2/n)c(1 - m/n))} = 0C

lim[n->‡]{n^m * |r|^n} = 0C

‚ą‚ę‚ć‚čC- |r| <= r <= |r|C- n^m * |r|^n <= n^m * r^n <= n^m * |r|^nC‚Ȃ̂ŁC

lim[n->‡]{n^m * r^n} = lim[n->‡]{n^m * |r|^n} = 0C

Œ‹‹ÇCr = 0 ‚ŕŠÜ‚߂āC

lim[n->‡]{n^m * r^n} = 0C

‚Ş‚˘‚Ś‚Ü‚ˇB

‚ł‚āCSm(n) = ƒ°[k=1,n]{k^m * r^k}CSm = lim[n->‡]{Sm(n)} = ƒ°[k=1,‡]{k^m * r^k}C‚Ć‚ľ‚Ü‚ˇB

m = 0

S0(n) = ƒ°[k=1,n]{r^k} = r(1 - r^n)/(1 - r)C

S0 = lim[n->‡]{S0(n)} = r/(1 - r)C

m = 1

S1(n) = ƒ°[k=1,n]{k * r^k}Cr * S1(n) = ƒ°[k=1,n]{k * r^(k+1)}C

(1 - r)S1(n) = ƒ°[k=1,n]{(k - (k-1))r^k} - n * r^(n+1) = ƒ°[k=1,n]{r^k} - n * r^(n+1) = S0(n) - n * r^(n+1)C

(1 - r)S1 = S0 - 0 = S0 = r/(1 - r)C

S1 = r/(1 - r)^2C

m = 2

S2(n) = ƒ°[k=1,n]{k^2 * r^k}Cr * S2(n) = ƒ°[k=1,n]{k^2 * r^(k+1)}C

(1 - r)S2(n) = ƒ°[k=1,n]{(k^2 - (k-1)^2)r^k} - n^2 * r^(n+1)

= ƒ°[k=1,n]{(2k - 1)r^k} - n^2 * r^(n+1)

= 2 * ƒ°[k=1,n]{k * r^k} - ƒ°[k=1,n]{r^k} - n^2 * r^(n+1)

= 2 * S1(n) - S0(n) - n^2 * r^(n+1)C

(1 - r)S2 = 2 * S1 - S0 - 0 = 2 * S1 - S0 = 2r/(1 - r)^2 - r/(1 - r)C

S2 = 2r/(1 - r)^3 - r/(1 - r)^2 = r(r + 1)/(1 - r)^3C

m = 3

S3(n) = ƒ°[k=1,n]{k^3 * r^k}Cr * S3(n) = ƒ°[k=1,n]{k^3 * r^(k+1)}C

(1 - r)S3(n) = ƒ°[k=1,n]{(k^3 - (k-1)^3)r^k} - n^3 * r^(n+1)

= ƒ°[k=1,n]{(3k^2 - 3k + 1)r^k} - n^3 * r^(n+1)

= 3 * ƒ°[k=1,n]{k^2 * r^k} - 3 * ƒ°[k=1,n]{k * r^k} + ƒ°[k=1,n]{r^k} - n^3 * r^(n+1)

= 3 * S2(n) - 3 * S1(n) + S0(n) - n^3 * r^(n+1)C

(1 - r)S3 = 3 * S2 - 3 * S1 + S0 - 0 = 3 * S2 - 3 * S1 + S0 = 3r(r + 1)/(1 - r)^3 - 3r/(1 - r)^2 + r/(1 - r)C

S3 = 3r(r + 1)/(1 - r)^4 - 3r/(1 - r)^3 + r/(1 - r)^2 = r(r^2 + 4r + 1)/(1 - r)^4C

m = 4

S4(n) = ƒ°[k=1,n]{k^4 * r^k}Cr * S34(n) = ƒ°[k=1,n]{k^4 * r^(k+1)}C

(1 - r)S4(n) = ƒ°[k=1,n]{(k^4 - (k-1)^4)r^k} - n^4 * r^(n+1)

= ƒ°[k=1,n]{(4k^3 - 6k^2 + 4k - 1)r^k} - n^4 * r^(n+1)

= 4 * ƒ°[k=1,n]{k^3 * r^k} - 6 * ƒ°[k=1,n]{k^2 * r^k} + 4 * ƒ°[k=1,n]{k * r^k} +- ƒ°[k=1,n]{r^k} - n^4 * r^(n+1)

= 4 * S3(n) - 6 * S2(n) + 4 * S1(n) - S0(n) - n^4 * r^(n+1)C

(1 - r)S4 = 4 * S3 - 6 * S2 + 4 * S1 - S0 - 0 = 4 * S3 - 6 * S2 + 4 * S1 - S0

= 4r(r^2 + 4r + 1)/(1 - r)^4 - 6r(r + 1)/(1 - r)^3 + 4r/(1 - r)^2 - r/(1 - r)C

S4 = 4r(r^2 + 4r + 1)/(1 - r)^5 - 6r(r + 1)/(1 - r)^4 + 4r/(1 - r)^3 - r/(1 - r)^2

= r(r^3 + 11r^2 + 11r + 1)/(1 - r)^5C

ˆę”ĘŽŽ‚đ‘‚Ť‰ş‚ˇ‚Ě‚Í“ď‚ľ‚ť‚¤‚Ĺ‚ˇ‚ށC‘Q‰ťŽŽ‚Ć‚ľ‚āC–ž‚ç‚Š‚ɁC

Sm = (ƒ°[i=0,m-1]{mCi * (-1)^(m-1-i) * Si})/(1 - r)

‚Ə‘‚Ż‚Ü‚ˇ‚ˁB

‚ą‚ę‚ç‚ĚŽŽ‚Ě“ąo‚É‚Í”÷•Ş‚đŽg‚¤•ű–@‚ŕ‚ ‚č‚Ü‚ˇB

Sm+1(n) = ƒ°[k=1,n]{k^(m+1) * r^k} = r * d(ƒ°[k=1,n]{k^m * r^k})/dr = r * d(Sm(n))/drC

Sm+1 = lim[n->‡]{Sm+1(n)} = lim[n->‡]{r * d(Sm(n))/dr}C

‚đ—˜—p‚ľ‚Ü‚ˇB‚ą‚ą‚ŁCˆę”ʂɁCf(r) ‚đ r^n ‚đŠÜ‚Ü‚Č‚˘ŽŽ‚Ć‚ľ‚āCr^n * f(r) ‚đl‚Ś‚é‚ƁC

r * d(r^n * f(r))/dr = nr^n * f(r) + r^n * r * df/dr

‚Ć‚Č‚Á‚āCÄ‚Ń r^n ‚đŠÜ‚ŢŽŽ‚É‚Č‚č‚Ü‚ˇB

‚ť‚ą‚ŁClim[n->‡]{n^m * r^n} = 0C‚Š‚çCn->‡ ‚Ĺ‚Í‚ą‚̍€‚Í 0 ‚É‚Č‚č‚Ü‚ˇB

‚‚܂čCr^n ‚đŠÜ‚ލ€‚́Clim[n->‡]{r * d(c)/dr} ‚ĚŒvŽZŒ‹‰Ę‚É‚ÍŒř‚Š‚Č‚˘‚̂ŁC

Ĺ‰‚Š‚ç‚ą‚̍€‚đœ‚˘‚ÄŒvŽZ‚ľ‚Ä‚˘‚˘‚ą‚Ć‚É‚Č‚č‚Ü‚ˇB

ˆČă‚Ě‚ą‚Ć‚đ“Ľ‚Ü‚Ś‚ÄŒvŽZ‚ľ‚Ü‚ˇB

m = 0

S0(n) = ƒ°[k=1,n]{r^k} = r(1 - r^n)/(1 - r) = r/(1 - r) - r^(n+1)/(1 - r)

S0 = lim[n->‡]{S0(n)} = r/(1 - r)C

‚ą‚ĚŽŽ‚Š‚ç•Ş‚Š‚č‚Ü‚ˇ‚ށCr^n ‚đŠÜ‚ލ€‚́C‚ą‚ęˆČ~‚ŕ S0(n) ‚Ě r^n ‚đŠÜ‚ލ€‚Š‚ç‚ľ‚ŠŒť‚ę‚Ü‚š‚ńB

‚ť‚ą‚ŁCˆČ‰ş‚ĚŒvŽZ‚Ĺ•K—v‚Č‚Ě‚Í S0(n) ‚̍ŏ‰‚̍€‚ž‚Ż‚ŁC‚ą‚ę‚Í S0 ‚ŁC‚ľ‚Š‚ŕ S0 ‚É‚Í n ‚ŞŒť‚ę‚Ü‚š‚ńB

‚‚܂čCˆČ‰ş‚ĚŒvŽZ‚ł́Cn->‡ ‚Č‚ľ‚ŁCS0 ‚đ‡ŽŸ r * d(c)/dr ‚ˇ‚é‚ž‚Ż‚Ĺ‚˘‚˘‚ą‚Ć‚É‚Č‚č‚Ü‚ˇB

‚ą‚ę‚́CŒ‹‹ÇCSm+1 = r * d(Sm)/drC‚Ć“™‰ż‚Ĺ‚ˇB

m = 1

S1 = r * d(S0)/dr = r * d(r/(1 - r))/dr = r/(1 - r)^2C

m = 2

S2 = r * d(S1)/dr = r * d(r/(1 - r)^2)/dr

= r((1 - r)^2 - r(2(1 - r)(-1)))/(1 - r)^4 = r(r + 1)/(1 - r)^3C

m = 3

S3 = r * d(S2)/dr = r * d(r(r + 1)/(1 - r)^3)/dr

= r((2r + 1)(1 - r)^3 - r(r + 1)(3(1 - r)^2(-1)))/(1 - r)^6

= r(r^2 + 4r + 1)/(1 - r)^4C

m = 4

S4 = r * d(S3)/dr = r * d(r(r^2 + 4r + 1)/(1 - r)^4)/dr

= r((3r^2 + 8r + 1)(1 - r)^4 - r(r^2 + 4r + 1)(4(1 - r)^3(-1)))/(1 - r)^8

= r(r^3 + 11r^2 + 11r + 1)/(1 - r)^5C

‚ą‚ę‚ŕCŒvŽZ•ű–@‚Í’Pƒ‚Š‚–ž‚ç‚Š‚Ĺ‚ˇ‚ށCˆę”ĘŽŽ‚đ‘‚Ť‰ş‚ˇ‚Ě‚Í“ď‚ľ‚ť‚¤‚Ĺ‚ˇB

Œ‹‹ÇC

S0 = r/(1 - r)C

S1 = r/(1 - r)^2C

S2 = r(r + 1)/(1 - r)^3C

S3 = r(r^2 + 4r + 1)/(1 - r)^4C

S4 = r(r^3 + 11r^2 + 11r + 1)/(1 - r)^5C

‚É‚Č‚č‚Ü‚ˇB

–â‚PF

S1 ‚Ĺ r = 1/2 ‚Ć‚ˇ‚ę‚΂悭C

S1 = (1/2)/(1 - 1/2)^2 = 2

–â‚QF

S2 ‚Ĺ r = 1/2 ‚Ć‚ˇ‚ę‚΂悭C

S2 = (1/2)(1/2 + 1)/(1 - 1/2)^3 = 2(1 + 2) = 6

–â‚RF

S3 ‚Ĺ r = 1/2 ‚Ć‚ˇ‚ę‚΂悭C

S3 = (1/2)((1/2)^2 + 4(1/2) + 1)/(1 - 1/2)^4 = 2(1 + 8 + 4) = 26

–â‚SF

S4 ‚Ĺ r = 1/2 ‚Ć‚ˇ‚ę‚΂悭C

S4 = (1/2)((1/2)^3 + 11(1/2)^2 + 11(1/2) + 1)/(1 - 1/2)^5 = 2(1 + 22 + 44 + 8) = 150

 (•Ę‰đ)

Sm = (ƒ°[i=0,m-1]{mCi * (-1)^(m-1-i) * Si})/(1 - r)

‚đ—˜—p‚ľ‚Ü‚ˇB‚ą‚ĚŽŽ‚Ć S0 = r/(1 - r) ‚đ r = 1/2 ‚ĹŽg‚˘‚Ü‚ˇB

Sm = 2 * ƒ°[i=0,m-1]{mCi * (-1)^(m-1-i) * Si}C

S0 = 1

–â‚PF

S1 = 2 * (1C0 * (-1)^0 * S0) = 2 * 1 = 2

–â‚QF

S2 = 2 * (2C0 * (-1)^1 * S0 + 2C1 * (-1)^0 * S1) = 2 * (- 1 + 4) = 2 * 3 = 6

–â‚RF

S3 = 2 * (3C0 * (-1)^2 * S0 + 3C1 * (-1)^1 * S1 + 3C2 * (-1)^0 * S2)

= 2 * (1 - 6 + 18) = 2 * 13 = 26

–â‚SF

S4 = 2 * (4C0 * (-1)^3 * S0 + 4C1 * (-1)^2 * S1 + 4C2 * (-1)^1 * S2 + 4C3 * (-1)^0 * S3)

= 2 * (- 1 + 8 - 36 + 104) = 2 * 75 = 150

 (lŽ@)

‚ť‚ĚŒăCˆę”ĘŽŽ‚đ‚ŕ‚¤­‚ľl‚Ś‚Ä‚Ý‚Ü‚ľ‚˝B‚˘‚܂ЂƂ‚̊´‚ś‚ŕ‚ ‚č‚Ü‚ˇ‚ށCˆę‰žC‘‚˘‚Ä‚¨‚Ť‚Ü‚ˇB

”÷•Ş‚đŽg‚¤•ű–@‚ōl‚Ś‚Ü‚ˇB

Sm = r * d(Sm-1)/drC

S0 = r/(1 - r) = - 1 + 1/(1 - r)C

S1 = r * d(S0)/dr = r * d(- 1 + 1/(1 - r))/dr

= r/(1 - r)^2 = - 1/(1 - r) + 1/(1 - r)^2C

S2 = r * d(S1)/dr = r * d(- 1/(1 - r) + 1/(1 - r)^2)/dr

= - r/(1 - r)^2 + 2r/(1 - r)^3 = 1/(1 - r) - 3/(1 - r)^2 + 2/(1 - r)^3

S3 = r * d(S2)/dr = r * d(1/(1 - r) - 3/(1 - r)^2 + 2/(1 - r)^3)/dr

= r/(1 - r)^2 - 6r/(1 - r)^3 + 6r/(1 - r)^4

= - 1/(1 - r) + 7/(1 - r)^2 - 12/(1 - r)^3 + 6/(1 - r)^4C

S4 = r * d(S3)/dr = r * d(- 1/(1 - r) + 7/(1 - r)^2 - 12/(1 - r)^3 + 6/(1 - r)^4)/dr

= - r/(1 - r)^2 + 14r/(1 - r)^3 - 36r/(1 - r)^4 + 24r/(1 - r)^5

= 1/(1 - r) - 15/(1 - r)^2 + 50/(1 - r)^3 - 60/(1 - r)^4 + 24/(1 - r)^5

c

‚ą‚ę‚ç‚ĚŒvŽZ‚Š‚çCm >= 1 ‚Ĺ Sm = ƒ°[n=1,m+1]{a(m,n)/(1 - r)^n}C‚Ć‚¨‚Ż‚āC

a(m+1,n) = (n-1) * a(m,n-1) - n * a(m,n)Ca(0,1) = 1Cn <= 0 –”‚Í n >= m+2 ‚Ĺ a(m,n) = 0C

‚Ć‚Č‚č‚Ü‚ˇB‚ą‚Ě‘Q‰ťŽŽ‚ÍŽŸ‚̂悤‚É‚ľ‚Ä‰đ‚­‚ą‚Ć‚Ş‚Ĺ‚Ť‚Ü‚ˇB

a(m+1,1) = - a(m,1)Ca(0,1) = 1C

a(m,1) = (-1)^mC

a(m+1,2) = a(m,1) - 2 * a(m,2) = (-1)^m - 2 * a(m,2)C

a(m+1,2)/(-2)^(m+1) - a(m,2)/(-2)^m = 1/(-2) * (1/2)^mCa(0,2) = 0C

a(m,2)/(-2)^m = 1/(-2) * ƒ°[k=0,m-1]{(1/2)^k} = 1/(-2) * (1 - (1/2)^m)/(1 - 1/2) = (1/2)~m - 1C

a(m,2) = (-1)^m * (1 - 2^m)C

a(m+1,3) = 2 * a(m,2) - 3 * a(m,3) = 2 * (-1)^m * (1 - 2^m) - 3 * a(m,3)C

a(m+1,3)/(-3)^(m+1) - a(m,3)/(-3)^m = 2/(-3) * ((1/3)^m - (2/3)^m)Ca(1,3) = 0C

a(m,3)/(-3)^m = 2/(-3) * ƒ°[k=1,m-1]{(1/3)^k - (2/3)^k}

= 2/(-3) * ((1/3)(1 - (1/3)^(m-1))/(1 - 1/3) - (2/3)(1 - (2/3)^(m-1))/(1 - 2/3))

= 1/(-3) * ((1 - (1/3)^(m-1)) - 4(1 - (2/3)^(m-1)))

= (1/3)^m - 2(2/3)^m + 1

a(m,3) = (-1)^m * (1 - 2 * 2^m + 3^m)C

a(m+1,4) = 3 * a(m,3) - 4 * a(m,4) = 3 * (-1)^m * (1 - 2 * 2^m + 3^m) - 4 * a(m,4)C

a(m+1,4)/(-4)^(m+1) - a(m,4)/(-4)^m = 3/(-4) * ((1/4)^m - 2 * (2/4)^m + (3/4)^m)Ca(2,4) = 0C

a(m,4)/(-4)^m = 3/(-4) * ƒ°[k=2,m-1]{(1/4)^k - 2 * (2/4)^k + (1/4)^k}

= 3/(-4) * ((1/4)^2 * (1 - (1/4)^(m-2))/(1 - 1/4) - 2 * (2/4)^2 * (1 - (2/4)^(m-2))/(1 - 2/4)

+ (3/4)^2 * (1 - (3/4)^(m-2))/(1 - 3/4))

= 1/(-4^2) * ((1 - (1/4)^(m-2)) - 12(1 - (2/4)^(m-2)) + 27(1 - (3/4)^(m-2)))

= (1/4)^m - 3(2/4)^m + 3(3/4)^m - 1

a(m,4) = (-1)^m * (1 - 3 * 2^m + 3 * 3^m - 4^m)C

c

‚ą‚ą‚Ü‚ĹŒvŽZ‚ˇ‚é‚ƁC

a(m,n) = (-1)^m * ƒ°[k=1,n]{(-1)^(k-1) * (n-1)C(k-1) * k^m}C

‚Ĺ‚Í‚Č‚˘‚ŠC‚Ć—\‘z‚Ĺ‚Ť‚Ü‚ˇB‚ą‚ę‚𐔊w“I‹A”[–@‚ĹŠm”F‚ľ‚Ü‚ľ‚傤B

n = 1 ` 4 ‚͍Ą‚Ü‚Ĺ‚ĚŒvŽZ‚ć‚萏—§‚ˇ‚é‚Ě‚Í–ž‚ç‚ŠB

n-1 ‚Őł‚ľ‚˘‚Ć‚ľ‚āC

a(m+1,n) = (n-1) * a(m,n-1) - n * a(m,n)

= (n-1) * (-1)^m * ƒ°[k=1,n-1]{(-1)^(k-1) * (n-2)C(k-1) * k^m} - n * a(m,n)C

a(m+1,n)/(-n)^(m+1) - a(m,n)/(-n)^m

= (n-1)/(-n) * ƒ°[k=1,n-1]{(-1)^(k-1) * (n-2)C(k-1) * (k/n)^m}Ca(n-2,n) = 0C

a(m,n)/(-n)^m = (n-1)/(-n) * ƒ°[i=n-2,m-1]{ƒ°[k=1,n-1]{(-1)^(k-1) * (n-2)C(k-1) * (k/n)^i}}

= (n-1)/(-n) * ƒ°[k=1,n-1]{(-1)^(k-1) * (n-2)C(k-1) * (k/n)^(n-2) * (1 - (k/n)^(m -(n-2)))/(1 - k/n)}

= (n-1) * ƒ°[k=1,n-1]{(-1)^k * (n-2)C(k-1) * ((k/n)^(n-2) - (k/n)^m)/(n-k)}

= ƒ°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * ((k/n)^(n-2) - (k/n)^m))}

= ƒ°[k=1,n-1]{(-1)^(k-1) * (n-1)C(k-1) * (k/n)^m)}

+ ƒ°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * (k/n)^(n-2)}

‚ą‚ą‚ŁC‘ć‚Q€‚́C

ƒ°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * (k/n)^(n-2)}

= ƒ°[k=0,n-1]{(-1)^k * nCk * k^(n-1)}/n^(n-1)

‚Ə‘‚ŻC‚ą‚Ě•ŞŽq‚́C

(1 - x)^n = ƒ°[k=0,n]{(-1)^k * nCk * x^k)}

‚đ x ‚Ĺ”÷•Ş‚ľ x ‚đŠ|‚Ż‚éCx * d/dxC‚đ n-1 ‰ńs‚Á‚Ä x = 1 ‚Ć‚¨‚˘‚˝ŽŽ‚Ě‚¤‚ż k = n ‚đœ‚˘‚˝ŽŽ‚Ĺ‚ˇB

k = n ‚ŕ“ü‚ę‚˝‘S‘̂́C(1 - x)^n ‚ɑ΂ľ‚Ä n-1 ‰ń‚Ě”÷•Ş‚Ĺ‚Í 1 - x ‚ŞŽc‚Á‚Ä‚ľ‚Ü‚¤‚̂ŁCx = 1 ‚Ĺ 0 ‚Ĺ‚ˇB

k = n ‚̍€‚Í‚ą‚Ě‘€ě‚Ĺ (-1)^n * n^(n-1) ‚Ć‚Č‚é‚̂ŁCŒ‹‹ÇC

ƒ°[k=0,n-1]{(-1)^k * nCk * k^(n-1)} + (-1)^n * n^(n-1) = 0C

ƒ°[k=0,n-1]{(-1)^k * nCk * k^(n-1)} = (-1)^(n-1) * n^(n-1)C

‚Ĺ‚ˇB‚ť‚ą‚ŁC

ƒ°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * (k/n)^(n-2)}

=ƒ°[k=0,n-1]{(-1)^k * nCk * k^(n-1)}/n^(n-1)

= (-1)^(n-1) * n^(n-1)/n^(n-1) = (-1)^(n-1) = (-1)^(n-1) * (n-1)C(n-1) * (n/n)^mC

a(m,n)/(-n)^m

= ƒ°[k=1,n-1]{(-1)^(k-1) * (n-1)C(k-1) * (k/n)^m)}

+ ƒ°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * (k/n)^(n-2)}

= ƒ°[k=1,n-1]{(-1)^(k-1) * (n-1)C(k-1) * (k/n)^m)}

+ (-1)^(n-1) * (n-1)C(n-1) * (n/n)^m

= ƒ°[k=1,n]{(-1)^(k-1) * (n-1)C(k-1) * (k/n)^m)}C

a(m,n) = (-1)^m * ƒ°[k=1,n]{(-1)^(k-1) * (n-1)C(k-1) * k^m)}

‚Ć‚Č‚Á‚āCŹ—§‚ľ‚Ü‚ˇB‚ą‚ę‚ŁCa(m,n) ‚Ěˆę”ĘŽŽ‚Ş‹‚Ü‚č‚Ü‚ľ‚˝B‚ť‚ą‚ŁC

Sm = ƒ°[n=1,m+1]{(-1)^m * ƒ°[k=1,n]{(-1)^(k-1) * (n-1)C(k-1) * k^m)}/(1 - r)^n}C

‚Ć‚Č‚č‚Ü‚ˇBˆę‰ž‚Í‹‚Ü‚Á‚˝‚Ć‚Í‚˘‚ŚŠČ’P‚Ĺ‚Í‚Č‚˘‚Ĺ‚ˇ‚ˁB

‚Č‚¨C‚ą‚ĚŽŽ‚đŽg‚Á‚襉ń‚Ě–â‘č‚đ‰đ‚­‚ƁCr = 1/2C1/(1 - r) = 2C‚Ȃ̂ŁC

S1 = - 1/(1 - r) + 1/(1 - r)^2

-> - 2 + 2^2 = - 2 + 4 = 2C

S2 = 1/(1 - r) - 3/(1 - r)^2 + 2/(1 - r)^3

-> 2 - 3 * 2^2 + 2 * 2^3 = 2 - 12 + 16 = 6C

S3 = - 1/(1 - r) + 7/(1 - r)^2 - 12/(1 - r)^3 + 6/(1 - r)^4

-> - 2 + 7 * 2^2 - 12 * 2^3 + 6 * 2^4 = - 2 + 28 - 96 + 96 = 26C

S4 = 1/(1 - r) - 15/(1 - r)^2 + 50/(1 - r)^3 - 60/(1 - r)^4 + 24/(1 - r)^5

-> 2 - 15 * 2^2 + 50 * 2^3 - 60 * 2^4 + 24 * 2^5= 2 - 60 + 400 - 960 + 768 = 150

‚Ć‚Č‚č‚Ü‚ˇB“–‘R‚Ĺ‚ˇ‚ށCˆČ‘O‚ĚŒ‹‰Ę‚Ćˆę’v‚ľ‚Ü‚ˇB

 (Š´‘z)

”÷•Ş‚đŽg‚Á‚˝‰đ–@‚́C‘ĺŠwƒŒƒxƒ‹‚Ě’mŽŻ‚đŽg‚Ś‚΁C

S0 = ƒ°[k=1,‡]{r^k} = r/(1 - r)C

‚ށCŽű‘Š”źŒa 1 ‚đ‚ŕ‚żC‚ą‚Ě”ÍˆÍ‚Ĺˆę—lâ‘ÎŽű‘Š‚ˇ‚é‚ą‚Ć‚Š‚çC‚ć‚čŒľ–§‚Š‚—eˆŐ‚É‚˘‚Ś‚é‚ą‚Ć‚Ĺ‚ˇB

‚ą‚ą‚ł́C‚ť‚ę‚đŽg‚킸‚ɁC‚ZƒŒƒxƒ‹‚Ĺ‚Ü‚Ć‚ß‚Ä‚Ý‚Ü‚ľ‚˝B

–łŒŔ‹‰”‚Ě—˜_‚ÍŽŔ”‚ĚŒľ–§‚Č’č‹`‚Ć‘Š‚Ü‚Á‚ÄŠŽŹ‚ľ‚˝ŒoˆÜ‚Ş‚ ‚čC

ƒ„[ƒRƒuEƒxƒ‹ƒk[ƒC‚ŞŠˆ–ô‚ľ‚˝ ‚Í‚Ü‚ž”­“W“ră‚ĆŽv‚í‚ę‚Ü‚ˇB

‰äX‚Í‘˝‚­‚̐ćl‚˝‚ż‚̉b’q‚Ě‚¨‚Š‚°‚Ĺ‘ĺ•ŞŠy‚đ‚ł‚š‚Ä‚ŕ‚ç‚Á‚Ä‚˘‚é‚ȁC‚Ɖü‚ß‚ÄŽv‚˘‚Ü‚ˇB

‚Č‚¨Că‹L‚Ě•ű–@‚Ĺ‚Íˆę”ĘŽŽ‚đ‘‚Ť‰ş‚ľ‚˝‚čˆę”Ę‚Ě’l‚đ‹‚ß‚é‚Ě‚Í“ď‚ľ‚ť‚¤‚Ĺ‚ˇB

‰˝‚Š‚¤‚Ü‚˘H•v‚Ş‚Č‚˘‚ŕ‚Ě‚Š‚ȁC‚Ć‚ŕŽv‚˘‚Ü‚ˇB

‚ť‚ĚŒăCˆę”ĘŽŽ‚Ě“ąo‚đ‚đlŽ@‚ľ‚Ü‚ľ‚˝B‚˝‚žC‚¤‚Ü‚­‚˘‚Á‚Ä‚˘‚é‚Ć‚Í‚˘‚˘‚Ş‚˝‚˘‚Ě‚Ĺ‚ˇ‚ށB

NO3u‘‹N‚Ť‚Ě‚¨‚ś‚ł‚ńv 08/31 14Žž13•Ş@ŽóM  XV 9/27

325‰đ“š@‘‹N‚Ť‚Ě‚¨‚ś‚ł‚ń

 

–â‘č‚P

‚Ć‚¨‚ŤAS‚Š‚ç  ‚đˆř‚­‚ƁAˇ‚Ş“™”䋉”‚É‚Č‚č‚Ü‚ˇB

‚ć‚Á‚āA

 

 

–â‘č2

‚Ć‚¨‚ŤA–â‘č1‚Ć“Ż—l‚ɍl‚Ś‚Ü‚ˇB

 

‚ą‚ą‚ŁA

‚Ć‚¨‚Ť‚Ü‚ˇB

‚ć‚Á‚āA

 

‚ą‚Ě’l‚đ’m‚Á‚ÄŽŽiAj‚É‘ă“ü‚ľAŒvŽZ‚ľ‚Ü‚ˇB

 

 

–â‘č3

‚Ć‚¨‚Ť‚Ü‚ˇB

 

‚ą‚ą‚ŁA

‚Ć‚¨‚Ť‚Ü‚ˇB

‚ć‚Á‚āA

 

‚ą‚Ě’l‚đ’m‚Á‚ÄŽŽiBj‚É‘ă“ü‚ľAŒvŽZ‚ľ‚Ü‚ˇB

 

 

–â‘č4

‚Ć‚¨‚Ť‚Ü‚ˇB

 

‚ą‚ą‚ŁA

‚Ć‚¨‚Ť‚Ü‚ˇB

 

‚ ‚ç‚Š‚ś‚߁A

‚đ‚Ó‚Ü‚Ś‚ÄŽŸ‚ĚŒvŽZ‚đ‚ľ‚Ü‚ˇB

 

‚ć‚Á‚āA

 

ŽŸ‚ɁA

‚Ć‚¨‚Ť‚Ü‚ˇB

 

‚ ‚ç‚Š‚ś‚߁A

‚đ‚Ó‚Ü‚Ś‚ÄŽŸ‚ĚŒvŽZ‚đ‚ľ‚Ü‚ˇ

 

 

‚ć‚Á‚āA

 

‚ą‚Ě’l‚đ’m‚Á‚ÄŽŽiCj‚É‘ă“ü‚ľAŒvŽZ‚ľ‚Ü‚ˇB

 

NO4u•l“c–ž–¤v         09/02 16Žž35•Ş@ŽóM  XV 9/27

VBSCRIPT‚É‚ÄˆĘ—Ž‚ż‚ľ‚Č‚˘‚Ć‚ą‚ë‚Ü‚ĹŒvŽZ‚ľC‰đ‚đ‹‚ß‚˝D

s1=0
s2=0
s3=0
s4=0
for j=1 to 1000
   s1=s1+j/2^j
   s2=s2+j*j/2^j
   s3=s3+j*j*j/2^j
   s4=s4+j*j*j*j/2^j
next
msgbox s1&chr(13)&s2&chr(13)&s3&chr(13)&s4

‚ť‚ę‚ź‚ę•”•Ş˜a‚Ě‹ÉŒŔ‚đ‹‚ß‚ę‚΂悢D
–â‚PD‚Ž„‚P‚Ć‚ˇ‚éD
@‘ć‚Ž•”•Ş˜a
@@‚r‚Ž‚P^‚Q{‚Q^‚Q‚Q{‚R^‚Q‚R{EEE{‚Ž^‚Q‚ŽEEE(1)
‚ɂ‚˘‚āC
@@‚P^‚QE‚r‚Ž‚P^‚Q‚Q{‚Q^‚Q‚R{EEE{(‚Ž|‚P)^‚Q‚Ž{‚Ž^‚Q‚Ž{‚PEEE(2)
@(1)|(2)‚ć‚čC
@@‚P^‚QE‚r‚Ž‚P^‚Q{‚P^‚Q‚Q{‚P^‚Q‚R{EEE{‚P^‚Q‚Ž|‚Ž^‚Q‚Ž{‚P
@@@@@@@@‚P^‚QE{‚P|(‚P^‚Q)‚Ž}^(‚P|‚P^‚Q)|‚Ž^‚Q‚Ž{‚P
@@@@@@@@‚P|(‚P^‚Q)‚Ž|‚Ž^‚Q‚Ž{‚P
@@ˆ‚r‚Ž‚Q{‚P|(‚P^‚Q)‚Ž}|‚Ž^‚Q‚ŽEEE(3)
@‚ą‚ą‚ŁC“ń€’č—‚Ć‚Ž„‚P‚ć‚čC
@@‚Q‚Ž(‚P{‚P)‚Ž‚Ž‚b‚O{‚Ž‚b‚P{‚Ž‚b‚Q{EEE{‚Ž‚b‚Ž„‚Ž‚b‚Q{‚Ž(‚Ž|‚P)}^‚Q„‚O
@@ˆ‚Oƒ‚P^‚Q‚Žƒ‚Q^{‚Ž(‚Ž|‚P)}
@@ˆ‚Oƒ‚Ž^‚Q‚Žƒ‚Q^(‚Ž|‚P)¨‚Oi‚Ž¨‡j
@‚Í‚ł‚Ý‚¤‚ż‚ĚŒ´—‚ć‚čC
@@lim‚Ž¨‡‚Ž^‚Q‚Ž‚O
@(3)‚Š‚çC
@@lim‚Ž¨‡‚r‚Žlim‚Ž¨‡[‚Q{‚P|(‚P^‚Q)‚Ž}|‚Ž^‚Q‚Ž]‚QEEE(“š)

–â‚QD‚Ž„‚Q‚Ć‚ˇ‚éD
@‘ć‚Ž•”•Ş˜a
@@‚r‚Ž‚P‚Q^‚Q{‚Q‚Q^‚Q‚Q{‚R‚Q^‚Q‚R{‚S‚Q^‚Q‚S{EEE{‚Ž‚Q^‚Q‚ŽEEE(1)
‚ɂ‚˘‚āC
@@‚P^‚QE‚r‚Ž‚P‚Q^‚Q‚Q{‚Q‚Q^‚Q‚R{‚R‚Q^‚Q‚S{EEE{(‚Ž|‚P)‚Q^‚Q‚Ž{‚Ž‚Q^‚Q‚Ž{‚PEEE(2)
@(1)|(2)‚ć‚čC
@@‚P^‚QE‚r‚Ž‚P^‚Q{‚R^‚Q‚Q{‚T^‚Q‚R{‚V^‚Q‚S{EEE{(‚Q‚Ž|‚P)^‚Q‚Ž|‚Ž‚Q^‚Q‚Ž{‚PEEE(3)
@@ˆ‚r‚Ž‚P{‚R^‚Q{‚T^‚Q‚Q{‚V^‚Q‚R{EEE{(‚Q‚Ž|‚P)^‚Q‚Ž|‚P|‚Ž‚Q^‚Q‚ŽEEE(4)
@(4)|(3)‚ć‚čC
@@‚P^‚QE‚r‚Ž‚P{‚Q^‚Q{‚Q^‚Q‚Q{‚Q^‚Q‚R{EEE{‚Q^‚Q‚Ž|‚P
@@@@@@@@@@{(|‚Ž‚Q|‚Q‚Ž{‚P)^‚Q‚Ž{‚Ž‚Q^‚Q‚Ž{‚P
@@@@@@@@‚P{‚P{‚P^‚Q{‚P^‚Q‚Q{EEE{‚P^‚Q‚Ž|‚Q{{‚Q(|‚Ž‚Q|‚Q‚Ž{‚P){‚Ž‚Q)^‚Q‚Ž{‚P
@@@@@@@@‚P{{‚P|(‚P^‚Q)‚Ž|‚P}^(‚P|‚P^‚Q){(|‚Ž‚Q|‚S‚Ž{‚Q)^‚Q‚Ž{‚P
@@@@@@@@‚P{‚Q{‚P|(‚P^‚Q)‚Ž|‚P}{(|‚Ž‚Q|‚S‚Ž{‚Q)^‚Q‚Ž{‚P
@@@@@@@@‚R|(‚P^‚Q)‚Ž|‚Q{(|‚Ž‚Q|‚S‚Ž{‚Q)^‚Q‚Ž{‚P
@@ˆ‚r‚Ž‚U|(‚P^‚Q)‚Ž|‚R{(|‚Ž‚Q|‚S‚Ž{‚Q)^‚Q‚ŽEEE(5)
@‚ą‚ą‚ŁC“ń€’č—‚Ć‚Ž„‚Q‚ć‚čC
@@‚Q‚Ž‚Ž‚b‚O{‚Ž‚b‚P{‚Ž‚b‚Q{‚Ž‚b‚R{EEE{‚Ž‚b‚Ž„‚Ž‚b‚R{‚Ž(‚Ž|‚P)(‚Ž|‚Q)}^‚U„‚O
@@ˆ‚Oƒ‚P^‚Q‚Žƒ‚U^{‚Ž(‚Ž|‚P)(‚Ž|‚Q)}
@@ˆ‚Oƒb(|‚Ž‚Q|‚S‚Ž{‚Q)^‚Q‚Žbƒ‚Ub(|‚Ž‚Q|‚S‚Ž{‚Q)^{‚Ž(‚Ž|‚P)(‚Ž|‚Q)}b
@@@@@@@@@@@@@@@‚Ub(|‚P|‚S^‚Ž{‚Q^‚Ž‚Q)^{(‚P|‚P^‚Ž)(‚Ž|‚Q)}b¨‚Oi‚Ž¨‡j
@‚Í‚ł‚Ý‚¤‚ż‚ĚŒ´—‚ć‚čC
@@lim‚Ž¨‡(|‚Ž‚Q|‚S‚Ž{‚Q)^‚Q‚Ž‚O
@(5)‚Š‚çC
@@lim‚Ž¨‡‚r‚Žlim‚Ž¨‡{‚U|(‚P^‚Q)‚Ž|‚R{(|‚Ž‚Q|‚S‚Ž{‚Q)^‚Q‚Ž}‚UEEE(“š)

–â‚RD
@–â‚PC‚Q‚Ć“Ż—l‚ɁClim‚Ž¨‡(‚Ž‚Ě‚QŽŸŽŽ)^‚Q‚Žlim‚Ž¨‡(‚Ž‚Ě‚RŽŸŽŽ)^‚Q‚Ž‚O‚Ĺ‚ ‚éD
@‚ą‚ą‚ŁC‚q‚‰(‚Ž)(‚Ž‚Ě‚ŽŸŽŽ)^‚Q‚Žilim‚Ž¨‡‚q‚‰(‚Ž)‚Oj‚Ć‚ˇ‚éD
@‚Ž„‚R‚Ć‚ˇ‚éD
@‘ć‚Ž•”•Ş˜a
@@‚r‚Ž‚P‚R^‚Q{‚Q‚R^‚Q‚Q{‚R‚R^‚Q‚R{‚S‚R^‚Q‚S{‚T‚R^‚Q‚T{EEE{‚Ž‚R^‚Q‚ŽEEE(1)
‚ɂ‚˘‚āC
@@‚P^‚QE‚r‚Ž‚P‚R^‚Q‚Q{‚Q‚R^‚Q‚R{‚R‚R^‚Q‚S{‚S‚R^‚Q‚T{EEE{(‚Ž|‚P)‚R^‚Q‚Ž{‚Ž‚R^‚Q‚Ž{‚P
@@@@@@@@@@@@@@@EEE(2)
@(1)|(2)‚ć‚čC
@@‚P^‚QE‚r‚Ž‚P^‚Q{‚V^‚Q‚Q{‚P‚X^‚Q‚R{‚R‚V^‚Q‚S{‚U‚P^‚Q‚T{EEE{(‚R‚Ž‚Q|‚R‚Ž{‚P)^‚Q‚Ž
@@@@@@@@@@@@@@@|‚Ž‚R^‚Q‚Ž{‚PEEE(3)
@@ˆ‚r‚Ž‚P{‚V^‚Q{‚P‚X^‚Q‚Q{‚R‚V^‚Q‚R{‚U‚P^‚Q‚S{EEE
@@@@@@@@@@@@{(‚R‚Ž‚Q|‚R‚Ž{‚P)^‚Q‚Ž|‚P|‚Ž‚R^‚Q‚ŽEEE(4)
@(4)|(3)‚ć‚čC
@@‚P^‚QE‚r‚Ž‚P{‚U^‚Q{‚P‚Q^‚Q‚Q{‚P‚W^‚Q‚R{‚Q‚S^‚Q‚S{EEE
@@@@@@@@@@{[(‚R‚Ž‚Q|‚R‚Ž{‚P)|{‚R(‚Ž|‚P)‚Q|‚R(‚Ž|‚P){‚P}]^‚Q‚Ž|‚P{‚q‚P(‚Ž)
@@@@@@@@‚P{‚R{‚P{‚Q^‚Q{‚R^‚Q‚Q{‚S^‚Q‚S{EEE{(‚Ž|‚P)^‚Q‚Ž|‚Q}{‚q‚P(‚Ž)
@@ˆ‚r‚Ž‚Q{‚U{‚P{‚Q^‚Q{‚R^‚Q‚Q{‚S^‚Q‚R{EEE{(‚Ž|‚P)^‚Q‚Ž|‚Q}{‚Q‚q‚P(‚Ž)EEE(5)
@@ˆ‚P^‚QE‚r‚Ž‚P{‚U{‚P^‚Q{‚Q^‚Q‚Q{‚R^‚Q‚R{‚S^‚Q‚S{EEE{(‚Ž|‚P)^‚Q‚Ž|‚P}{‚q‚P(‚Ž)
@@@@@@@@@@@@@@@EEE(6)
@(5)|(6)‚ć‚čC
@@‚P^‚QE‚r‚Ž‚P{‚U{‚P{‚P^‚Q{‚P^‚Q‚Q{‚P^‚Q‚R{EEE{‚P^‚Q‚Ž|‚Q
@@@@@@@@@@@@@@@|(‚Ž|‚P)^‚Q‚Ž|‚P}{‚q‚P(‚Ž)
@@@@@@@‚P{‚UE{‚P|(‚P^‚Q)‚Ž|‚P}^(‚P|‚P^‚Q){‚q‚Q(‚Ž)
@@@@@@@‚P{‚P‚Q{‚P|(‚P^‚Q)‚Ž|‚P}{‚q‚Q(‚Ž)
@@@@@@@‚P‚R|‚P‚Q(‚P^‚Q)‚Ž|‚P{‚q‚Q(‚Ž)
@@ˆ‚r‚Ž‚Q‚U|‚Q‚S(‚P^‚Q)‚Ž|‚P{‚Q‚q‚Q(‚Ž)¨‚Q‚Ui‚Ž¨‡j

–â‚SD‚Ž‚đ\•Ş‘ĺ‚Ť‚ȐłŽ”‚Ć‚ˇ‚éD
@‘ć‚Ž•”•Ş˜a
@@‚r‚Ž‚P‚S^‚Q{‚Q‚S^‚Q‚Q{‚R‚S^‚Q‚R{‚S‚S^‚Q‚S{‚T‚S^‚Q‚T{‚U‚S^‚Q‚U{EEE{‚Ž‚S^‚Q‚ŽEEE(1)
‚ɂ‚˘‚āC
@@‚P^‚QE‚r‚Ž‚P‚S^‚Q‚Q{‚Q‚S^‚Q‚R{‚R‚S^‚Q‚S{‚S‚S^‚Q‚T{EEE{(‚Ž|‚P)‚S^‚Q‚Ž{‚Ž‚S^‚Q‚Ž{‚P
@@@@@@@@@@@@@@@EEE(2)
@(1)|(2)‚ć‚čC
@@‚P^‚QE‚r‚Ž‚P^‚Q{‚P‚T^‚Q‚Q{‚U‚T^‚Q‚R{‚P‚V‚T^‚Q‚S{‚R‚U‚X^‚Q‚T{EEE
@@@@@@@@@@@@@@@{(‚S‚Ž‚R|‚U‚Ž‚Q{‚S‚Ž|‚P)^‚Q‚Ž|‚Ž‚S^‚Q‚Ž{‚PEEE(3)
@@ˆ‚r‚Ž‚P{‚P‚T^‚Q{‚U‚T^‚Q‚Q{‚P‚V‚T^‚Q‚R{‚R‚U‚X^‚Q‚S{‚U‚V‚P^‚Q‚T{EEE
@@@@@@@@@@@@{(‚S‚Ž‚R|‚U‚Ž‚Q{‚S‚Ž[‚P)^‚Q‚Ž|‚P|‚Ž‚S^‚Q‚ŽEEE(4)
@(4)|(3)‚ć‚čC
@@‚P^‚QE‚r‚Ž‚P{‚P‚S^‚Q{‚T‚O^‚Q‚Q{‚P‚P‚O^‚Q‚R{‚P‚X‚S^‚Q‚S{‚R‚O‚Q^‚Q‚T{EEE
@@@@@@@@{[(‚S‚Ž‚R|‚U‚Ž‚Q{‚S‚Ž|‚P)|{‚S(‚Ž|‚P)‚R|‚U(‚Ž|‚P)‚Q{‚S(‚Ž|‚P)|‚P}]^‚Q‚Ž|‚P
@@@@@@@@{‚q‚P(‚Ž)
@@@@@@@@@‚P{‚V{‚Q‚T^‚Q{‚T‚T^‚Q‚Q{‚X‚V^‚Q‚R{‚P‚T‚P^‚Q‚S{EEE
@@@@@@@@@@{(‚U‚Ž‚Q|‚P‚Q‚Ž{‚V)^‚Q‚Ž|‚Q{‚q‚P(‚Ž)EEE(5)
@@ˆ‚r‚Ž‚QE‚W{‚Q‚T{‚T‚T^‚Q{‚X‚V^‚Q‚Q{‚P‚T‚P^‚Q‚R{EEE
@@@@@@@@@@@@{(‚U‚Ž‚Q|‚P‚Q‚Ž{‚V)^‚Q‚Ž|‚R{‚Q‚q‚P(‚Ž)EEE(6)
@(6)|(5)‚ć‚čC
@@‚P^‚QE‚r‚Ž‚R‚R{‚R‚O^‚Q{‚S‚Q^‚Q‚Q{‚T‚S^‚Q‚R{EEE
@@@@@@@@@@@@@@@{[{(‚U‚Ž‚Q|‚P‚Q‚Ž{‚V)|{‚U(‚Ž|‚P)‚Q|‚P‚Q(‚Ž|‚P){‚V}]^‚Q‚Ž|‚R{‚q‚Q(‚Ž)
@@@@@@@@‚R‚R{‚P‚T{‚Q‚P^‚Q{‚Q‚V^‚Q‚Q{EEE{(‚U‚Ž|‚X)^‚Q‚Ž|‚S{‚q‚R(‚Ž)
@@ˆ‚r‚Ž‚QE‚S‚W{‚Q‚P{‚Q‚V^‚Q{EEE{(‚U‚Ž|‚X)^‚Q‚Ž|‚T{‚Q‚q‚R(‚Ž)
@@@@@‚X‚U{‚R{‚V{‚X^‚Q{EEE{(‚Q‚Ž|‚R)^‚Q‚Ž|‚T}{‚Q‚q‚R(‚Ž)EEE(7)
@@ˆ‚P^‚QE‚r‚Ž‚S‚W{‚R{‚V^‚Q{‚X^‚Q‚Q{EEE{(‚Q‚Ž|‚R)^‚Q‚Ž|‚S}{‚q‚R(‚Ž)EEE(8)
@(7)|(8)‚ć‚čC
@@‚P^‚QE‚r‚Ž‚S‚W{‚R(‚V{‚Q^‚Q{‚Q^‚Q‚Q{EEE{‚Q^‚Q‚Ž|‚S){‚q‚S(‚Ž)
@@@@@@@@‚S‚W{‚Q‚P{‚R(‚P{‚P^‚Q{EEE‚P^‚Q‚Ž|‚T){‚q‚S(‚Ž)
@@@@@@@@‚U‚X{‚RE{‚P|(‚P^‚Q)‚Ž|‚S}^(‚P|‚P^‚Q){‚q‚S(‚Ž)
@@@@@@@@‚U‚X{‚U{‚P|(‚P^‚Q)‚Ž|‚S}{‚q‚S(‚Ž)
@@@@@@@@‚V‚T|‚U(‚P^‚Q)‚Ž|‚S{‚q‚S(‚Ž)
@@ˆ‚r‚Ž‚P‚T‚O|‚P‚Q(‚P^‚Q)‚Ž|‚S{‚Q‚q‚S(‚Ž)¨‚P‚T‚Oi‚Ž¨‡j

NO5u˝Ó°¸Ď݁v           09/02 17Žž23•Ş@ŽóM  XV 9/27

Ą‰ń‚͍ŏ‰‚Ě‚Q–â‚Ş‰đ‚Ż‚˝‚ĆŽv‚˘‚Ü‚ˇ‚Ě‚Ĺ‚ť‚ą‚Ü‚Ĺ‚đ‚Î Orz

 

(1)

1/2+2/2^2+3/2^3+4/2^4+c

=1/2+1/2^2+1/2^3+cEEE(1/2-(1/2)^n)/(1-1/2)=S=1

+1/2^2+1/2^3+cEEE(1/2)*S

+1/2^3+1/2^4+cEEE(1/2^2)*S

+1/2^4+cEEE(1/2^3)*S

c

=S*(1+1/2+1/2^2+c)

=S*(S+1)

=1*2=2

 

(2)

1/2+2^2/2^2+3^3/2^3+c

=1/2+1/2^2+1/2^3+c

+3*(1/2^2+1/2^3+c

+5*(1/2^3+1/2^4+c

c

=S*(1+3/2++5/2^2+7/2^3+9/2^4+c)

1+1/2+1/2^2+c=1+S=2

+2*(1/2++1/2^2+cEEES

+2*(1/2^2+1/2^3+cEEES/2

+2*(1/2^3+1/2^4+cEEES/2^2

=S*(1+1+1/2+1/2^2+c)

=S*(2+S)

=1*3=3

 

(3),(4) ‚́A‚¨‚ť‚ç‚­A4,5 ‚É‚Č‚é‚Ě‚ž‚낤‚Ż‚Ç‚í‚Š‚炸c^^;

ƒÄ”Ÿ”‚̂悤‚ɃǍ‚Ý‚Š‚ĆŽv‚Á‚Ä‚Ü‚ľ‚˝‚ށc–łŠÖŒW‚̂悤‚Ĺ‚ˇ‚Ë c^^

ƒ…‚Ě—Ź‚ęFŽc”O‚Č‚Ş‚çi‚Qj‚͐ł‰đ‚ÉŽŠ‚Á‚āEEE„

NO6u‚É‚˘‚΂čZ12v      09/09 23Žž41•Ş@ŽóM  XV 9/27

€”ő

 

‡@@a=ƒ°k=1`‡1/2k=1/2+1/22+1/23+1/24+1/25+EEEE=(1/2)/(1-1/2)=1(“™”䋉”‚ĚŒöŽŽ)

‡A@np-(n-1)p= np-ƒ°i=0`pop C p -i (-1) i-1npp=-ƒ°i=1`pop C p -i (-1) inp-1pi“ń€’č—jH

 

–â1@‚ą‚Ě–â‘č‚͐悸ŽŽ•ĎŒ`‚Ĺ•’Ę‚Él‚Ś‚Ü‚ľ‚˝

ƒ°k=1`‡k/2k=  1/2+2/22+3/23+4/24+5/25+EEEE

@@@@@=  1/2+1/22+1/23+1/24+1/25+EEEE

             +   1/22+1/23+1/24+1/25+EEEE

             +@      1/23+1/24+1/25+EEEE

             +            1/24+1/25+EEEE

             +                +1/25+EEEE

             E

             E

@@@@@=  1/2+1/22+1/23+1/24+1/25+EEEE

             + 1/2(1/2+1/22+1/23+1/24+EEEE)

             +     1/22(1/2+1/22+1/23+EEEE)       

             +          1/23(1/2+1/22+EEEE)

             +               1/24(1/2+EEEE)

             E

             E

ƒ°k=1`‡1/2k=1EEE€”ő‡@‚ć‚č

         =a+(1/2+2/22+3/23+4/24+5/25+EEEE)a=a+a2=2EEE‰ń“š

‚ˇ‚ą‚ľA‰đ‚č‚É‚­‚˘‚Š‚ŕ‚ľ‚ę‚Ü‚š‚ń‚ށAuEEEv‚đŽg‚í‚Č‚˘‚ŏ‘‚­‚Ć

ƒ°k=1`‡k/2k=(ƒ°k=1`‡1/2k)(1+(ƒ°k=1`‡1/2k )(ƒ°k=1`‡1/2k))=2‚Ć‚Č‚č‚Ü‚ˇBiŽÖ‘Ťj

–â2@–â1‚Ć“Ż—l‚ÉŽŽ•ĎŒ`‚ōl‚Ś‚é‚ĆŽŸ‚̂悤‚É‚Č‚č‚Ü‚ˇB

ƒ°k=1`‡k2/2k=  1/2+22/22+32/23+42/24+52/25+EEEE

@@@@@=  1/2+1/22+1/23+1/24+1/25+EEEE

             +   1/22+1/23+1/24+1/25+EEEE

             +   1/22+1/23+1/24+1/25+EEEE

             +   1/22+1/23+1/24+1/25+EEEE

             +@      1/23+1/24+1/25+EEEE

             +@      1/23+1/24+1/25+EEEE

             +@      1/23+1/24+1/25+EEEE

             +@      1/23+1/24+1/25+EEEE

             +@      1/23+1/24+1/25+EEEE

             +            1/24+1/25+EEEE

             +            1/24+1/25+EEEE

             +            1/24+1/25+EEEE

             +            1/24+1/25+EEEE

             +            1/24+1/25+EEEE

             +            1/24+1/25+EEEE

             +            1/24+1/25+EEEE

             +                1/25+EEEE

             +                1/25+EEEE

             +                1/25+EEEE

             +                1/25+EEEE

             +                1/25+EEEE

             +                1/25+EEEE

             +                1/25+EEEE

             +                1/25+EEEE

             +                1/25+EEEE

             E

             E

@@@@@=  a(12-0)+a(22-1)E1/2+ a(32-22)E1/22+ a(42-32)E1/23+ a(52-42)E1/24+EEEE

@@@@@= 1+(22-1)E1/2+(32-22)E1/22+(42-32)E1/23+(52-42)E1/24+EEEE

 

‚ą‚ą‚Ĺn2-(n-1)2‚̐”—ń‚đl‚Ś‚é‚Ć

€”ő‡A‚Š‚ç2n-1‚Ć‚Č‚é‚Ě‚Ĺn=1‚Š‚çl‚Ś‚é‚Ɗ—ń‚Ć‚Č‚č‚Ü‚ˇB

‚ć‚Á‚Ä

ƒ°k=1`‡k2/2k= (1/2)0+3(1/2)1+5(1/2)2+7(1/2)3+9(1/2) 4+11(1/2)5+EEEE=ƒ°k=1`‡(2k-1)/2(k-1)

ƒ°k=1`‡k2/2k=ƒ°k=1`‡2k/2(k-1) -ƒ°k=1`‡1/2(k-1) =4ƒ°k=1`‡k/2k –2(ƒ°k=1`‡1/2k)

ƒ°k=1`‡k/2k=2EEE–â1‚ć‚č

ƒ°k=1`‡1/2k=1EEE€”ő‡@‚ć‚č

 

ƒ°k=1`‡k2/2k=4ƒ°k=1`‡k/2k –2(ƒ°k=1`‡1/2k) =4~2|2~16EEEEE‰ń“š@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

–â3@–â2ÔŽš‚Ć“Ż—l‚É•\Œť‚ˇ‚é‚ĆŽŸ‚̂悤‚É‚Č‚č‚Ü‚ˇB

ƒ°k=1`‡k3/2k@=  a(13-0)+a(23-1)E1/2+ a(33-23)E1/22+ a(43-33)E1/23+ a(53-43)E1/24+EEEE

‚ą‚ą‚Ĺn3-(n-1)3‚̐”—ń‚͏€”ő‡A‚Š‚ç

3n2-3n+1

‚ć‚Á‚Ä

ƒ°k=1`‡k3/2k@=3ƒ°k=1`‡k2/2k-1|3ƒ°k=1`‡k/2k-1+ƒ°k=1`‡1/2k-1

 

ƒ°k=1`‡k2/2k=6EEE–â2‚ć‚č

ƒ°k=1`‡k/2k=2EEE–â1‚ć‚č

ƒ°k=1`‡1/2k=1EEE€”ő‚ć‚č

ƒ°k=1`‡k3/2k@=2~i3~6|3~2+1j26EEEEE‰ń“š

–â4@–â3ÔŽš‚Ć“Ż—l‚É•\Œť‚ˇ‚é‚ĆŽŸ‚̂悤‚É‚Č‚č‚Ü‚ˇB

 

ƒ°k=1`‡k4/2k@=  a(14-0)+a(24-1)E1/2+ a(34-24)E1/22+ a(44-34)E1/23+ a(54-44)E1/24+EEEE

‚ą‚ą‚Ĺn4-(n-1)4‚Í–â3‚Ć“Ż—l‚É

4n3-6n2+4n-1

‚ć‚Á‚Ä

ƒ°k=1`‡k4/2k@=4ƒ°k=1`‡k3/2k-1|6ƒ°k=1`‡k2/2k-1+4ƒ°k=1`‡k/2k-1|ƒ°k=1`‡1/2k-1

 

ƒ°k=1`‡k3/2k=26EEE–â3‚ć‚č

ƒ°k=1`‡k2/2k=6EEE–â2‚ć‚č

ƒ°k=1`‡k/2k=2EEE–â1‚ć‚č

ƒ°k=1`‡1/2k=1EEE€”ő‚ć‚č

ƒ°k=1`‡k4/2k@=2~i4~26|6~6+4~2|1j150EEEEE‰ń“š

 

------------------------------------------------------------

‚Ć‚č‚ ‚Ś‚¸1‰ń–ڂ̉ń“š‚đ‚ł‚š‚Ä’¸‚Ť‚Ü‚ˇ

ŠÔ‚ɍ‡‚Ś‚Î

ƒ°k=1`‡kn/2k

‚ł‚ç‚É

ƒ°k=1`‡kn/mk

‚đl‚Ś‚Ä‚Ý‚˝‚˘‚ĆŽv‚˘‚Ü‚ˇ

------------------------------------------------------------