˝ŹQVNXQVú
[ŹęŻ]
@@@@@ć325ńwIČĺđ
@@@@@@đĺWúÔF830ú`927ú
mÔ°şĚ߼ÍŢŮÇ°˛ĚłŔn
uw´âďâvú{ŔĆoĹĐiŹěcęjđÇńŢÄA[RvExk[Ci1654N`1705NjŞşLĚłŔĚlđßĢ˝Ć˘Ä čÜľ˝B
@
QlFŢĚíÉnExk[Ci1667N`1748NjŞ˘ÜˇBIC[i1707`1783NjĚśtÉíĚnŞ˘ÜˇB
NO1uńxĐŻŘv 08/30
0949Ş@óM XV 9/27
ć325ńwIČĺâčĚđđčܡD
ć뾨袾ܡD
()
â1: 2
â2: 6
â3: 26
â4: 150
łŽ n ĆŽ k (0
k) ÉÎľÄCA(n,k)đĚć¤Éč`ˇéD
A(n,k)=°[j=0..k]((-1)^j)*comb(n+1,j)*(k-j)^n.
(k>nĚĆŤÍ
A(n,k)=0ĆČéD)
ąĚĆŤC°[k0]A(n,k)*t^k ÍĚć¤ÉČéD
°[k0]A(n,k)*t^k
=°[k0](°[j=0..k]((-1)^j)*comb(n+1,j)*(k-j)^n)*t^k
=°[k0](°[j=0..k]((-1)^(k-j))*comb(n+1,k-j)*j^n)*t^k
=°[j0]°[kj]((-1)^(k-j))*comb(n+1,k-j)*j^n)*t^k
=°[j0](j^n)*(t^j)°[kj]comb(n+1,k-j)*t^(k-j)
=°[j0](j^n)*(t^j)*(1-t)^(n+1).
ćÁÄC
°[j0](j^n)*(t^j) =
(1-t)^(-n-1)*°[k0]A(n,k)*t^k.
CÓĚłŽ m ÉÎľÄC
f(m)=°[k1](k^m)/(2^k) ơéĆC
f(m)=°[k0](k^m)/(2^k)
=°[j0](j^m)*((1/2)^j)
=(1-1/2)^(-m-1)*°[k0]A(m,k)*(1/2)^k
=(1/2)^(-m-1)*°[k=0..m](1/2)^k*(°[j=0..k]((-1)^j)*comb(m+1,j)*(k-j)^m).
ąĚvZŽđgÁÄvZˇéĆC
f(1)=2,f(2)=6,f(3)=26,f(4)=150.
Ü˝áŚÎC
f(100)
=11133509631364650299699656360843806862971167990688281554425819235539210812744
137555815269127221215916681393895912461647364346849254775983678654845346975177
59492540384054716630.
NO2uuchinyanv
08/30 1611Ş@óM
uuchinyanv
09/04 1138Ş@óM XV 9/27
ľęĘIÉlŚÄÝܡB
ČşĹÍCkCn đ 1 ČăĚŽCm đ 0 ČăĚŽCr đ -1 < r < 1 ĚŔƾܡB
ܸClim[n->]{n^m * r^n} = 0CšB
ąęÍCr = 0 ĚęÍžçŠČĚĹC0 < |r| < 1 đŚšÎ˘˘ĹˇB
ťąĹCa đłĚŔĆľÄC|r| = 1/(1 + a)C(1 + a)^n = °[i=0,n]{nCi * a^i}CĆČčC
n Ş m ćčŕ\ŞÉ卢łĚŽĚęÉÍC
(1 + a)^n
> nC(m+1) * a^(m+1) = n(n-1)(n-2)c(n-m)/(m+1)! * a^(m+1)C
0 < n^m
* |r|^n = n^m/(1 + a)^n < n^m/(nC(m+1) * a^(m+1)) = (m+1)!/a^(m+1) * 1/(n(1
- 1/n)(1 - 2/n)c(1 - m/n))C
0 <=
lim[n->]{n^m * |r|^n} <= (m+1)!/a^(m+1) * lim[n->]{1/n} *
lim[n->]{1/(1 - 1/n)(1 - 2/n)c(1 - m/n))} = 0C
lim[n->]{n^m
* |r|^n} = 0C
ąęćčC- |r| <= r <= |r|C- n^m * |r|^n <=
n^m * r^n <= n^m * |r|^nCČĚĹC
lim[n->]{n^m
* r^n} = lim[n->]{n^m * |r|^n} = 0C
ÇCr = 0 ŕÜßÄC
lim[n->]{n^m
* r^n} = 0C
Ş˘ŚÜˇB
łÄCSm(n) = °[k=1,n]{k^m * r^k}CSm =
lim[n->]{Sm(n)} = °[k=1,]{k^m * r^k}CƾܡB
m = 0
S0(n) =
°[k=1,n]{r^k} = r(1 - r^n)/(1 - r)C
S0 =
lim[n->]{S0(n)} = r/(1 - r)C
m = 1
S1(n) =
°[k=1,n]{k * r^k}Cr * S1(n) = °[k=1,n]{k *
r^(k+1)}C
(1 -
r)S1(n) = °[k=1,n]{(k - (k-1))r^k} - n * r^(n+1) = °[k=1,n]{r^k} - n * r^(n+1)
= S0(n) - n * r^(n+1)C
(1 - r)S1
= S0 - 0 = S0 = r/(1 - r)C
S1 = r/(1
- r)^2C
m = 2
S2(n) =
°[k=1,n]{k^2 * r^k}Cr * S2(n) = °[k=1,n]{k^2 *
r^(k+1)}C
(1 -
r)S2(n) = °[k=1,n]{(k^2 - (k-1)^2)r^k} - n^2 * r^(n+1)
=
°[k=1,n]{(2k - 1)r^k} - n^2 * r^(n+1)
= 2 *
°[k=1,n]{k * r^k} - °[k=1,n]{r^k} - n^2 * r^(n+1)
= 2 *
S1(n) - S0(n) - n^2 * r^(n+1)C
(1 - r)S2
= 2 * S1 - S0 - 0 = 2 * S1 - S0 = 2r/(1 - r)^2 - r/(1 - r)C
S2 = 2r/(1
- r)^3 - r/(1 - r)^2 = r(r + 1)/(1 - r)^3C
m = 3
S3(n) =
°[k=1,n]{k^3 * r^k}Cr * S3(n) = °[k=1,n]{k^3 *
r^(k+1)}C
(1 -
r)S3(n) = °[k=1,n]{(k^3 - (k-1)^3)r^k} - n^3 * r^(n+1)
=
°[k=1,n]{(3k^2 - 3k + 1)r^k} - n^3 * r^(n+1)
= 3 *
°[k=1,n]{k^2 * r^k} - 3 * °[k=1,n]{k * r^k} + °[k=1,n]{r^k} - n^3 * r^(n+1)
= 3 *
S2(n) - 3 * S1(n) + S0(n) - n^3 * r^(n+1)C
(1 - r)S3
= 3 * S2 - 3 * S1 + S0 - 0 = 3 * S2 - 3 * S1 + S0 = 3r(r + 1)/(1 - r)^3 - 3r/(1
- r)^2 + r/(1 - r)C
S3 = 3r(r
+ 1)/(1 - r)^4 - 3r/(1 - r)^3 + r/(1 - r)^2 = r(r^2 + 4r + 1)/(1 - r)^4C
m = 4
S4(n) =
°[k=1,n]{k^4 * r^k}Cr * S34(n) = °[k=1,n]{k^4 *
r^(k+1)}C
(1 -
r)S4(n) = °[k=1,n]{(k^4 - (k-1)^4)r^k} - n^4 * r^(n+1)
=
°[k=1,n]{(4k^3 - 6k^2 + 4k - 1)r^k} - n^4 * r^(n+1)
= 4 *
°[k=1,n]{k^3 * r^k} - 6 * °[k=1,n]{k^2 * r^k} + 4 * °[k=1,n]{k * r^k} +-
°[k=1,n]{r^k} - n^4 * r^(n+1)
= 4 *
S3(n) - 6 * S2(n) + 4 * S1(n) - S0(n) - n^4 * r^(n+1)C
(1 - r)S4
= 4 * S3 - 6 * S2 + 4 * S1 - S0 - 0 = 4 * S3 - 6 * S2 + 4 * S1 - S0
= 4r(r^2 +
4r + 1)/(1 - r)^4 - 6r(r + 1)/(1 - r)^3 + 4r/(1 - r)^2 - r/(1 - r)C
S4 =
4r(r^2 + 4r + 1)/(1 - r)^5 - 6r(r + 1)/(1 - r)^4 + 4r/(1 - r)^3 - r/(1 - r)^2
= r(r^3 +
11r^2 + 11r + 1)/(1 - r)^5C
ęʮ𫺷ĚÍďľť¤ĹˇŞCQťŽĆľÄCžçŠÉC
Sm =
(°[i=0,m-1]{mCi * (-1)^(m-1-i) * Si})/(1 - r)
ƯܡËB
ąęçĚŽĚąoÉÍ÷Şđg¤ű@ŕ čܡB
Sm+1(n) =
°[k=1,n]{k^(m+1) * r^k} = r * d(°[k=1,n]{k^m * r^k})/dr = r * d(Sm(n))/drC
Sm+1 =
lim[n->]{Sm+1(n)} = lim[n->]{r * d(Sm(n))/dr}C
đpľÜˇBąąĹCęĘÉCf(r) đ r^n đÜÜȢŽĆľÄCr^n * f(r) đlŚéĆC
r * d(r^n
* f(r))/dr = nr^n * f(r) + r^n * r * df/dr
ĆČÁÄCÄŃ r^n đÜŢŽÉČčܡB
ťąĹClim[n->]{n^m * r^n} = 0CŠçCn-> ĹÍąĚÍ 0 ÉČčܡB
ÂÜčCr^n đÜŢÍClim[n->]{r * d(c)/dr} ĚvZĘÉÍřŠČ˘ĚĹC
ĹŠçąĚđ˘ÄvZľÄ˘˘ąĆÉČčܡB
ČăĚąĆđĽÜŚÄvZľÜˇB
m = 0
S0(n) =
°[k=1,n]{r^k} = r(1 - r^n)/(1 - r) = r/(1 - r) - r^(n+1)/(1 - r)
S0 =
lim[n->]{S0(n)} = r/(1 - r)C
ąĚŽŠçŞŠčܡŞCr^n đÜŢÍCąęČ~ŕ S0(n) Ě r^n đÜފ羊ťęÜšńB
ťąĹCČşĚvZĹKvČĚÍ S0(n) ĚĹĚžŻĹCąęÍ S0 ĹCľŠŕ S0 ÉÍ n ŞťęÜšńB
ÂÜčCČşĚvZĹÍCn-> ČľĹCS0 đ r
* d(c)/dr ˇéžŻĹ˘˘ąĆÉČčܡB
ąęÍCÇCSm+1 = r * d(Sm)/drCƿšB
m = 1
S1 = r *
d(S0)/dr = r * d(r/(1 - r))/dr = r/(1 - r)^2C
m = 2
S2 = r *
d(S1)/dr = r * d(r/(1 - r)^2)/dr
= r((1 -
r)^2 - r(2(1 - r)(-1)))/(1 - r)^4 = r(r + 1)/(1 - r)^3C
m = 3
S3 = r *
d(S2)/dr = r * d(r(r + 1)/(1 - r)^3)/dr
= r((2r +
1)(1 - r)^3 - r(r + 1)(3(1 - r)^2(-1)))/(1 - r)^6
= r(r^2 +
4r + 1)/(1 - r)^4C
m = 4
S4 = r *
d(S3)/dr = r * d(r(r^2 + 4r + 1)/(1 - r)^4)/dr
= r((3r^2
+ 8r + 1)(1 - r)^4 - r(r^2 + 4r + 1)(4(1 - r)^3(-1)))/(1 - r)^8
= r(r^3 +
11r^2 + 11r + 1)/(1 - r)^5C
ąęŕCvZű@ÍPŠÂžçŠĹˇŞCęʮ𫺷ĚÍďľť¤ĹˇB
ÇC
S0 = r/(1
- r)C
S1 = r/(1
- r)^2C
S2 = r(r +
1)/(1 - r)^3C
S3 = r(r^2
+ 4r + 1)/(1 - r)^4C
S4 = r(r^3
+ 11r^2 + 11r + 1)/(1 - r)^5C
ÉČčܡB
âPF
S1 Ĺ r = 1/2 ơęÎćC
S1 =
(1/2)/(1 - 1/2)^2 = 2
âQF
S2 Ĺ r = 1/2 ơęÎćC
S2 =
(1/2)(1/2 + 1)/(1 - 1/2)^3 = 2(1 + 2) = 6
âRF
S3 Ĺ r = 1/2 ơęÎćC
S3 =
(1/2)((1/2)^2 + 4(1/2) + 1)/(1 - 1/2)^4 = 2(1 + 8 + 4) = 26
âSF
S4 Ĺ r = 1/2 ơęÎćC
S4 =
(1/2)((1/2)^3 + 11(1/2)^2 + 11(1/2) + 1)/(1 - 1/2)^5 = 2(1 + 22 + 44 + 8) = 150
(Ęđ)
Sm =
(°[i=0,m-1]{mCi * (-1)^(m-1-i) * Si})/(1 - r)
đpľÜˇBąĚŽĆ S0 = r/(1 - r) đ r = 1/2 Ĺg˘ÜˇB
Sm = 2 *
°[i=0,m-1]{mCi * (-1)^(m-1-i) * Si}C
S0 = 1
âPF
S1 = 2 *
(1C0 * (-1)^0 * S0) = 2 * 1 = 2
âQF
S2 = 2 *
(2C0 * (-1)^1 * S0 + 2C1 * (-1)^0 * S1) = 2 * (- 1 + 4) = 2 * 3 = 6
âRF
S3 = 2 *
(3C0 * (-1)^2 * S0 + 3C1 * (-1)^1 * S1 + 3C2 * (-1)^0 * S2)
= 2 * (1 -
6 + 18) = 2 * 13 = 26
âSF
S4 = 2 *
(4C0 * (-1)^3 * S0 + 4C1 * (-1)^2 * S1 + 4C2 * (-1)^1 * S2 + 4C3 * (-1)^0 * S3)
= 2 * (- 1
+ 8 - 36 + 104) = 2 * 75 = 150
(l@)
ťĚăCęĘŽđाlŚÄÝÜľ˝B˘ÜĐĆÂĚ´śŕ čܡŞCęC˘Ä¨ŤÜˇB
÷Şđg¤ű@ĹlŚÜˇB
Sm = r *
d(Sm-1)/drC
S0 = r/(1
- r) = - 1 + 1/(1 - r)C
S1 = r *
d(S0)/dr = r * d(- 1 + 1/(1 - r))/dr
= r/(1 -
r)^2 = - 1/(1 - r) + 1/(1 - r)^2C
S2 = r *
d(S1)/dr = r * d(- 1/(1 - r) + 1/(1 - r)^2)/dr
= - r/(1 -
r)^2 + 2r/(1 - r)^3 = 1/(1 - r) - 3/(1 - r)^2 + 2/(1 - r)^3
S3 = r *
d(S2)/dr = r * d(1/(1 - r) - 3/(1 - r)^2 + 2/(1 - r)^3)/dr
= r/(1 -
r)^2 - 6r/(1 - r)^3 + 6r/(1 - r)^4
= - 1/(1 -
r) + 7/(1 - r)^2 - 12/(1 - r)^3 + 6/(1 - r)^4C
S4 = r *
d(S3)/dr = r * d(- 1/(1 - r) + 7/(1 - r)^2 - 12/(1 - r)^3 + 6/(1 - r)^4)/dr
= - r/(1 -
r)^2 + 14r/(1 - r)^3 - 36r/(1 - r)^4 + 24r/(1 - r)^5
= 1/(1 -
r) - 15/(1 - r)^2 + 50/(1 - r)^3 - 60/(1 - r)^4 + 24/(1 - r)^5
c
ąęçĚvZŠçCm >= 1 Ĺ Sm = °[n=1,m+1]{a(m,n)/(1 -
r)^n}CƨŻÄC
a(m+1,n) =
(n-1) * a(m,n-1) - n * a(m,n)Ca(0,1) = 1Cn <= 0 Í n >= m+2 Ĺ a(m,n) = 0C
ĆČčܡBąĚQťŽÍĚć¤ÉľÄđąĆŞĹŤÜˇB
a(m+1,1) =
- a(m,1)Ca(0,1) = 1C
a(m,1) =
(-1)^mC
a(m+1,2) =
a(m,1) - 2 * a(m,2) = (-1)^m - 2 * a(m,2)C
a(m+1,2)/(-2)^(m+1)
- a(m,2)/(-2)^m = 1/(-2) * (1/2)^mCa(0,2) = 0C
a(m,2)/(-2)^m
= 1/(-2) * °[k=0,m-1]{(1/2)^k} = 1/(-2) * (1 - (1/2)^m)/(1 - 1/2) = (1/2)~m - 1C
a(m,2) =
(-1)^m * (1 - 2^m)C
a(m+1,3) =
2 * a(m,2) - 3 * a(m,3) = 2 * (-1)^m * (1 - 2^m) - 3 * a(m,3)C
a(m+1,3)/(-3)^(m+1)
- a(m,3)/(-3)^m = 2/(-3) * ((1/3)^m - (2/3)^m)Ca(1,3) = 0C
a(m,3)/(-3)^m
= 2/(-3) * °[k=1,m-1]{(1/3)^k - (2/3)^k}
= 2/(-3) *
((1/3)(1 - (1/3)^(m-1))/(1 - 1/3) - (2/3)(1 - (2/3)^(m-1))/(1 - 2/3))
= 1/(-3) *
((1 - (1/3)^(m-1)) - 4(1 - (2/3)^(m-1)))
= (1/3)^m
- 2(2/3)^m + 1
a(m,3) =
(-1)^m * (1 - 2 * 2^m + 3^m)C
a(m+1,4) =
3 * a(m,3) - 4 * a(m,4) = 3 * (-1)^m * (1 - 2 * 2^m + 3^m) - 4 * a(m,4)C
a(m+1,4)/(-4)^(m+1)
- a(m,4)/(-4)^m = 3/(-4) * ((1/4)^m - 2 * (2/4)^m + (3/4)^m)Ca(2,4) = 0C
a(m,4)/(-4)^m
= 3/(-4) * °[k=2,m-1]{(1/4)^k - 2 * (2/4)^k + (1/4)^k}
= 3/(-4) *
((1/4)^2 * (1 - (1/4)^(m-2))/(1 - 1/4) - 2 * (2/4)^2 * (1 - (2/4)^(m-2))/(1 -
2/4)
+ (3/4)^2
* (1 - (3/4)^(m-2))/(1 - 3/4))
= 1/(-4^2)
* ((1 - (1/4)^(m-2)) - 12(1 - (2/4)^(m-2)) + 27(1 - (3/4)^(m-2)))
= (1/4)^m
- 3(2/4)^m + 3(3/4)^m - 1
a(m,4) =
(-1)^m * (1 - 3 * 2^m + 3 * 3^m - 4^m)C
c
ąąÜĹvZˇéĆC
a(m,n) =
(-1)^m * °[k=1,n]{(-1)^(k-1) * (n-1)C(k-1) * k^m}C
ĹÍȢŠCĆ\zōܡBąęđwIA[@ĹmFľÜľĺ¤B
n = 1 ` 4 ÍĄÜĹĚvZć菧ˇéĚÍžçŠB
n-1 Ĺłľ˘ĆľÄC
a(m+1,n) =
(n-1) * a(m,n-1) - n * a(m,n)
= (n-1) *
(-1)^m * °[k=1,n-1]{(-1)^(k-1) * (n-2)C(k-1) * k^m} - n * a(m,n)C
a(m+1,n)/(-n)^(m+1)
- a(m,n)/(-n)^m
=
(n-1)/(-n) * °[k=1,n-1]{(-1)^(k-1) * (n-2)C(k-1) * (k/n)^m}Ca(n-2,n) = 0C
a(m,n)/(-n)^m
= (n-1)/(-n) * °[i=n-2,m-1]{°[k=1,n-1]{(-1)^(k-1) * (n-2)C(k-1) * (k/n)^i}}
= (n-1)/(-n)
* °[k=1,n-1]{(-1)^(k-1) * (n-2)C(k-1) * (k/n)^(n-2) * (1 - (k/n)^(m -(n-2)))/(1
- k/n)}
= (n-1) *
°[k=1,n-1]{(-1)^k * (n-2)C(k-1) * ((k/n)^(n-2) - (k/n)^m)/(n-k)}
=
°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * ((k/n)^(n-2) - (k/n)^m))}
=
°[k=1,n-1]{(-1)^(k-1) * (n-1)C(k-1) * (k/n)^m)}
+
°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * (k/n)^(n-2)}
ąąĹCćQÍC
°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * (k/n)^(n-2)}
=
°[k=0,n-1]{(-1)^k * nCk * k^(n-1)}/n^(n-1)
ĆŻCąĚŞqÍC
(1 - x)^n
= °[k=0,n]{(-1)^k * nCk * x^k)}
đ x Ĺ÷Şľ x đ|ŻéCx *
d/dxCđ n-1 ńsÁÄ x = 1 ƨ˘˝ŽĚ¤ż k = n 𢽎šB
k = n ŕüę˝SĚÍC(1 - x)^n ÉÎľÄ n-1 ńĚ÷ŞĹÍ 1 - x ŞcÁľܤĚĹCx = 1 Ĺ 0 šB
k = n ĚÍąĚěĹ (-1)^n * n^(n-1) ĆČéĚĹCÇC
°[k=0,n-1]{(-1)^k * nCk * k^(n-1)} + (-1)^n * n^(n-1) = 0C
°[k=0,n-1]{(-1)^k * nCk * k^(n-1)} = (-1)^(n-1) * n^(n-1)C
šBťąĹC
°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * (k/n)^(n-2)}
=°[k=0,n-1]{(-1)^k
* nCk * k^(n-1)}/n^(n-1)
=
(-1)^(n-1) * n^(n-1)/n^(n-1) = (-1)^(n-1) = (-1)^(n-1) * (n-1)C(n-1) * (n/n)^mC
a(m,n)/(-n)^m
=
°[k=1,n-1]{(-1)^(k-1) * (n-1)C(k-1) * (k/n)^m)}
+
°[k=1,n-1]{(-1)^k * (n-1)C(k-1) * (k/n)^(n-2)}
=
°[k=1,n-1]{(-1)^(k-1) * (n-1)C(k-1) * (k/n)^m)}
+
(-1)^(n-1) * (n-1)C(n-1) * (n/n)^m
=
°[k=1,n]{(-1)^(k-1) * (n-1)C(k-1) * (k/n)^m)}C
a(m,n) =
(-1)^m * °[k=1,n]{(-1)^(k-1) * (n-1)C(k-1) * k^m)}
ĆČÁÄCŹ§ľÜˇBąęĹCa(m,n) ĚęĘŽŞÜčÜľ˝BťąĹC
Sm =
°[n=1,m+1]{(-1)^m * °[k=1,n]{(-1)^(k-1) * (n-1)C(k-1) * k^m)}/(1 - r)^n}C
ĆČčܡBęÍÜÁ˝Ć͢ŚČPĹÍȢšËB
ȨCąĚŽđgÁÄĄńĚâčđđĆCr = 1/2C1/(1 - r) = 2CČĚĹC
S1 = -
1/(1 - r) + 1/(1 - r)^2
-> - 2
+ 2^2 = - 2 + 4 = 2C
S2 = 1/(1
- r) - 3/(1 - r)^2 + 2/(1 - r)^3
-> 2 -
3 * 2^2 + 2 * 2^3 = 2 - 12 + 16 = 6C
S3 = -
1/(1 - r) + 7/(1 - r)^2 - 12/(1 - r)^3 + 6/(1 - r)^4
-> - 2
+ 7 * 2^2 - 12 * 2^3 + 6 * 2^4 = - 2 + 28 - 96 + 96 = 26C
S4 = 1/(1
- r) - 15/(1 - r)^2 + 50/(1 - r)^3 - 60/(1 - r)^4 + 24/(1 - r)^5
-> 2 -
15 * 2^2 + 50 * 2^3 - 60 * 2^4 + 24 * 2^5= 2 - 60 + 400 - 960 + 768 = 150
ĆČčܡBRšŞCČOĚĘĆęvľÜˇB
(´z)
÷ŞđgÁ˝đ@ÍCĺwxĚmŻđgŚÎC
S0 =
°[k=1,]{r^k} = r/(1 - r)C
ŞCűŠźa 1 đŕżCąĚÍÍĹęlâÎűŠˇéąĆŠçCć辧ŠÂeŐɢŚéąĆšB
ąąĹÍCťęđgí¸ÉCZxĹÜĆßÄÝÜľ˝B
łŔĚ_ÍŔĚľ§Čč`ĆÜÁÄŽŹľ˝oÜŞ čC
[RuExk[CŞôľ˝ ÍÜžWrăĆvíęܡB
äXÍ˝Ěćl˝żĚbq̨Š°ĹĺŞyđłšÄŕçÁĢéČCĆüßÄv˘ÜˇB
ȨCăLĚű@ĹÍęʮ𫺵˝čęĘĚlđßéĚÍďľť¤ĹˇB
˝Š¤Ü˘HvŞČ˘ŕĚŠČCĆŕv˘ÜˇB
ťĚăCęĘŽĚąođđl@ľÜľ˝B˝žC¤Ü˘ÁĢéĆ͢˘Ş˝˘ĚšŞB
NO3uNŤĚ¨śłńv 08/31 1413Ş@óM XV 9/27
325đ@NŤĚ¨śłń
âčP
ƨŤASŠç đřĆAˇŞäÉČčܡB
ćÁÄA
âč2
ƨŤAâč1ĆŻlÉlŚÜˇB
ąąĹA
ƨŤÜˇB
ćÁÄA
ąĚlđmÁÄŽiAjÉăüľAvZľÜˇB
âč3
ƨŤÜˇB
ąąĹA
ƨŤÜˇB
ćÁÄA
ąĚlđmÁÄŽiBjÉăüľAvZľÜˇB
âč4
ƨŤÜˇB
ąąĹA
ƨŤÜˇB
犜ßA
đÓÜŚÄĚvZđľÜˇB
ćÁÄA
ÉA
ƨŤÜˇB
犜ßA
đÓÜŚÄĚvZđľÜˇ
ćÁÄA
ąĚlđmÁÄŽiCjÉăüľAvZľÜˇB
NO4ulcž¤v
09/02 1635Ş@óM XV 9/27
VBSCRIPTÉÄĘżľČ˘ĆąëÜĹvZľCđđß˝D
s1=0
s2=0
s3=0
s4=0
for j=1 to 1000
s1=s1+j/2^j
s2=s2+j*j/2^j
s3=s3+j*j*j/2^j
s4=s4+j*j*j*j/2^j
next
msgbox s1&chr(13)&s2&chr(13)&s3&chr(13)&s4
ťęźęŞaĚÉŔđßęÎć˘D
âPDPơéD
@ćŞa
@@rP^Q{Q^QQ{R^QR{EEE{^QEEE(1)
É¢ÄC
@@P^QErP^QQ{Q^QR{EEE{(|P)^Q{^Q{PEEE(2)
@(1)|(2)ćčC
@@P^QErP^Q{P^QQ{P^QR{EEE{P^Q|^Q{P
@@@@@@@@P^QE{P|(P^Q)}^(P|P^Q)|^Q{P
@@@@@@@@P|(P^Q)|^Q{P
@@rQ{P|(P^Q)}|^QEEE(3)
@ąąĹCńčĆPćčC
@@Q(P{P)bO{bP{bQ{EEE{bbQ{(|P)}^QO
@@OP^QQ^{(|P)}
@@O^QQ^(|P)¨Oi¨j
@ͳݤżĚ´ćčC
@@lim¨^QO
@(3)ŠçC
@@lim¨rlim¨[Q{P|(P^Q)}|^Q]QEEE()
âQDQơéD
@ćŞa
@@rPQ^Q{QQ^QQ{RQ^QR{SQ^QS{EEE{Q^QEEE(1)
É¢ÄC
@@P^QErPQ^QQ{QQ^QR{RQ^QS{EEE{(|P)Q^Q{Q^Q{PEEE(2)
@(1)|(2)ćčC
@@P^QErP^Q{R^QQ{T^QR{V^QS{EEE{(Q|P)^Q|Q^Q{PEEE(3)
@@rP{R^Q{T^QQ{V^QR{EEE{(Q|P)^Q|P|Q^QEEE(4)
@(4)|(3)ćčC
@@P^QErP{Q^Q{Q^QQ{Q^QR{EEE{Q^Q|P
@@@@@@@@@@{(|Q|Q{P)^Q{Q^Q{P
@@@@@@@@P{P{P^Q{P^QQ{EEE{P^Q|Q{{Q(|Q|Q{P){Q)^Q{P
@@@@@@@@P{{P|(P^Q)|P}^(P|P^Q){(|Q|S{Q)^Q{P
@@@@@@@@P{Q{P|(P^Q)|P}{(|Q|S{Q)^Q{P
@@@@@@@@R|(P^Q)|Q{(|Q|S{Q)^Q{P
@@rU|(P^Q)|R{(|Q|S{Q)^QEEE(5)
@ąąĹCńčĆQćčC
@@QbO{bP{bQ{bR{EEE{bbR{(|P)(|Q)}^UO
@@OP^QU^{(|P)(|Q)}
@@Ob(|Q|S{Q)^QbUb(|Q|S{Q)^{(|P)(|Q)}b
@@@@@@@@@@@@@@@Ub(|P|S^{Q^Q)^{(P|P^)(|Q)}b¨Oi¨j
@ͳݤżĚ´ćčC
@@lim¨(|Q|S{Q)^QO
@(5)ŠçC
@@lim¨rlim¨{U|(P^Q)|R{(|Q|S{Q)^Q}UEEE()
âRD
@âPCQĆŻlÉClim¨(ĚQŽ)^Qlim¨(ĚRŽ)^QOĹ éD
@ąąĹCq()(ĚŽ)^Qilim¨q()OjơéD
@RơéD
@ćŞa
@@rPR^Q{QR^QQ{RR^QR{SR^QS{TR^QT{EEE{R^QEEE(1)
É¢ÄC
@@P^QErPR^QQ{QR^QR{RR^QS{SR^QT{EEE{(|P)R^Q{R^Q{P
@@@@@@@@@@@@@@@EEE(2)
@(1)|(2)ćčC
@@P^QErP^Q{V^QQ{PX^QR{RV^QS{UP^QT{EEE{(RQ|R{P)^Q
@@@@@@@@@@@@@@@|R^Q{PEEE(3)
@@rP{V^Q{PX^QQ{RV^QR{UP^QS{EEE
@@@@@@@@@@@@{(RQ|R{P)^Q|P|R^QEEE(4)
@(4)|(3)ćčC
@@P^QErP{U^Q{PQ^QQ{PW^QR{QS^QS{EEE
@@@@@@@@@@{[(RQ|R{P)|{R(|P)Q|R(|P){P}]^Q|P{qP()
@@@@@@@@P{R{P{Q^Q{R^QQ{S^QS{EEE{(|P)^Q|Q}{qP()
@@rQ{U{P{Q^Q{R^QQ{S^QR{EEE{(|P)^Q|Q}{QqP()EEE(5)
@@P^QErP{U{P^Q{Q^QQ{R^QR{S^QS{EEE{(|P)^Q|P}{qP()
@@@@@@@@@@@@@@@EEE(6)
@(5)|(6)ćčC
@@P^QErP{U{P{P^Q{P^QQ{P^QR{EEE{P^Q|Q
@@@@@@@@@@@@@@@|(|P)^Q|P}{qP()
@@@@@@@P{UE{P|(P^Q)|P}^(P|P^Q){qQ()
@@@@@@@P{PQ{P|(P^Q)|P}{qQ()
@@@@@@@PR|PQ(P^Q)|P{qQ()
@@rQU|QS(P^Q)|P{QqQ()¨QUi¨j
âSDđ\ŞĺŤČłŽĆˇéD
@ćŞa
@@rPS^Q{QS^QQ{RS^QR{SS^QS{TS^QT{US^QU{EEE{S^QEEE(1)
É¢ÄC
@@P^QErPS^QQ{QS^QR{RS^QS{SS^QT{EEE{(|P)S^Q{S^Q{P
@@@@@@@@@@@@@@@EEE(2)
@(1)|(2)ćčC
@@P^QErP^Q{PT^QQ{UT^QR{PVT^QS{RUX^QT{EEE
@@@@@@@@@@@@@@@{(SR|UQ{S|P)^Q|S^Q{PEEE(3)
@@rP{PT^Q{UT^QQ{PVT^QR{RUX^QS{UVP^QT{EEE
@@@@@@@@@@@@{(SR|UQ{S[P)^Q|P|S^QEEE(4)
@(4)|(3)ćčC
@@P^QErP{PS^Q{TO^QQ{PPO^QR{PXS^QS{ROQ^QT{EEE
@@@@@@@@{[(SR|UQ{S|P)|{S(|P)R|U(|P)Q{S(|P)|P}]^Q|P
@@@@@@@@{qP()
@@@@@@@@@P{V{QT^Q{TT^QQ{XV^QR{PTP^QS{EEE
@@@@@@@@@@{(UQ|PQ{V)^Q|Q{qP()EEE(5)
@@rQEW{QT{TT^Q{XV^QQ{PTP^QR{EEE
@@@@@@@@@@@@{(UQ|PQ{V)^Q|R{QqP()EEE(6)
@(6)|(5)ćčC
@@P^QErRR{RO^Q{SQ^QQ{TS^QR{EEE
@@@@@@@@@@@@@@@{[{(UQ|PQ{V)|{U(|P)Q|PQ(|P){V}]^Q|R{qQ()
@@@@@@@@RR{PT{QP^Q{QV^QQ{EEE{(U|X)^Q|S{qR()
@@rQESW{QP{QV^Q{EEE{(U|X)^Q|T{QqR()
@@@@@XU{R{V{X^Q{EEE{(Q|R)^Q|T}{QqR()EEE(7)
@@P^QErSW{R{V^Q{X^QQ{EEE{(Q|R)^Q|S}{qR()EEE(8)
@(7)|(8)ćčC
@@P^QErSW{R(V{Q^Q{Q^QQ{EEE{Q^Q|S){qS()
@@@@@@@@SW{QP{R(P{P^Q{EEEP^Q|T){qS()
@@@@@@@@UX{RE{P|(P^Q)|S}^(P|P^Q){qS()
@@@@@@@@UX{U{P|(P^Q)|S}{qS()
@@@@@@@@VT|U(P^Q)|S{qS()
@@rPTO|PQ(P^Q)|S{QqS()¨PTOi¨j
NO5u˝Ó°¸ĎÝv
09/02 1723Ş@óM XV 9/27
ĄńÍĹĚQâŞđŻ˝Ćv˘ÜˇĚĹťąÜĹđÎ Orz
(1)
1/2+2/2^2+3/2^3+4/2^4+c
+1/2^2+1/2^3+cEEE(1/2)*S
+1/2^3+1/2^4+cEEE(1/2^2)*S
+1/2^4+cEEE(1/2^3)*S
c
=S*(S+1)
=1*2=2
(2)
1/2+2^2/2^2+3^3/2^3+c
1+1/2+1/2^2+c=1+S=2
+2*(1/2++1/2^2+cEEES
+2*(1/2^2+1/2^3+cEEES/2
+2*(1/2^3+1/2^4+cEEES/2^2
=S*(1+1+1/2+1/2^2+c)
=S*(2+S)
=1*3=3
(3),(4) ÍA¨ťçA4,5 ÉČé̞뤯ÇíŠç¸c^^;
ÄĚć¤ÉÎÝŠĆvÁÄÜľ˝ŞcłÖWĚć¤ĹˇË c^^
ĚŹęFcOČŞçiQjÍłđÉÁÄEEE
NO6uɢÎčZ12v 09/09 2341Ş@óM
XV 9/27
ő
@@a=°k=1`1/2k=1/2+1/22+1/23+1/24+1/25+EEEE=(1/2)/(1-1/2)=1(äĚöŽ)
A@np-(n-1)p=
np-°i=0`pop C p -i (-1) i-1npp=-°i=1`pop C p -i (-1) inp-1pińčjH
â1@ąĚâčÍ渎Ď`ĹĘÉlŚÜľ˝
°k=1`k/2k= 1/2+2/22+3/23+4/24+5/25+EEEE
@@@@@= 1/2+1/22+1/23+1/24+1/25+EEEE
+ 1/22+1/23+1/24+1/25+EEEE
+@
1/23+1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+
+1/25+EEEE
E
E
@@@@@= 1/2+1/22+1/23+1/24+1/25+EEEE
+ 1/2(1/2+1/22+1/23+1/24+EEEE)
+ 1/22(1/2+1/22+1/23+EEEE)
+
1/23(1/2+1/22+EEEE)
+
1/24(1/2+EEEE)
E
E
°k=1`1/2k=1EEEő@ćč
=a+(1/2+2/22+3/23+4/24+5/25+EEEE)a=a+a2=2EEEń
ˇąľAđčɢŠŕľęÜšńŞAuEEEvđgíȢĹĆ
°k=1`k/2k=(°k=1`1/2k)(1+(°k=1`1/2k )(°k=1`1/2k))=2ĆČčܡBiÖŤj
â2@â1ĆŻlÉŽĎ`ĹlŚéĆĚć¤ÉČčܡB
°k=1`k2/2k=
1/2+22/22+32/23+42/24+52/25+EEEE
@@@@@= 1/2+1/22+1/23+1/24+1/25+EEEE
+ 1/22+1/23+1/24+1/25+EEEE
+ 1/22+1/23+1/24+1/25+EEEE
+ 1/22+1/23+1/24+1/25+EEEE
+@
1/23+1/24+1/25+EEEE
+@
1/23+1/24+1/25+EEEE
+@
1/23+1/24+1/25+EEEE
+@
1/23+1/24+1/25+EEEE
+@
1/23+1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+ 1/24+1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
+
1/25+EEEE
E
E
@@@@@=
a(12-0)+a(22-1)E1/2+ a(32-22)E1/22+
a(42-32)E1/23+ a(52-42)E1/24+EEEE
@@@@@= 1+(22-1)E1/2+(32-22)E1/22+(42-32)E1/23+(52-42)E1/24+EEEE
ąąĹn2-(n-1)2ĚńđlŚéĆ
őAŠç2n-1ĆČéĚĹn=1ŠçlŚéĆďńĆČčܡB
ćÁÄ
°k=1`k2/2k= (1/2)0+3(1/2)1+5(1/2)2+7(1/2)3+9(1/2)
4+11(1/2)5+EEEE=°k=1`(2k-1)/2(k-1)
°k=1`k2/2k=°k=1`2k/2(k-1) -°k=1`1/2(k-1) =4°k=1`k/2k –2(°k=1`1/2k)
°k=1`k/2k=2EEEâ1ćč
°k=1`1/2k=1EEEő@ćč
°k=1`k2/2k=4°k=1`k/2k –2(°k=1`1/2k) =4~2|2~16EEEEEń@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
â3@â2ÔĆŻlÉ\ťˇéĆĚć¤ÉČčܡB
°k=1`k3/2k@= a(13-0)+a(23-1)E1/2+ a(33-23)E1/22+ a(43-33)E1/23+ a(53-43)E1/24+EEEE
ąąĹn3-(n-1)3ĚńÍőAŠç
3n2-3n+1
ćÁÄ
°k=1`k3/2k@=3°k=1`k2/2k-1|3°k=1`k/2k-1+°k=1`1/2k-1
°k=1`k2/2k=6EEEâ2ćč
°k=1`k/2k=2EEEâ1ćč
°k=1`1/2k=1EEEőćč
°k=1`k3/2k@=2~i3~6|3~2+1j26EEEEEń
â4@â3ÔĆŻlÉ\ťˇéĆĚć¤ÉČčܡB
°k=1`k4/2k@= a(14-0)+a(24-1)E1/2+ a(34-24)E1/22+ a(44-34)E1/23+ a(54-44)E1/24+EEEE
ąąĹn4-(n-1)4Íâ3ĆŻlÉ
4n3-6n2+4n-1
ćÁÄ
°k=1`k4/2k@=4°k=1`k3/2k-1|6°k=1`k2/2k-1+4°k=1`k/2k-1|°k=1`1/2k-1
°k=1`k3/2k=26EEEâ3ćč
°k=1`k2/2k=6EEEâ2ćč
°k=1`k/2k=2EEEâ1ćč
°k=1`1/2k=1EEEőćč
°k=1`k4/2k@=2~i4~26|6~6+4~2|1j150EEEEEń
------------------------------------------------------------
Ćč Ś¸1ńÚĚńđłšÄ¸ŤÜˇ
ÔÉŚÎ
°k=1`kn/2k
łçÉ
°k=1`kn/mk
đlŚÄÝ˝˘Ćv˘Üˇ
------------------------------------------------------------