˝ŹQWNPOQú
[ŹęŻ]
@@@@@ć338ńwIČĺđ
@@@@@@đĺWúÔFXSú`10Qú
mŻ^CĚĘn
IfWlCÜÖ
jŁZĹŻ^CŞ3l˘ÄA2ĘĚâ_3ÂƢ¤ťŰިŤÜľ˝B¤ăâ
jŁZɨ˘ÄP[XWlŤąĆŞ čܡB
ąąĹAŻ^CŕNąčžéĆlŚÄAĚć¤ČěâđľÜľ˝BáŚÎARlĚęĘĚNąčűÍAiPAPAPjAiPAPARjAiPAQAQjAiPAQARjĚSĘč čܡB
âPF@WlĹ^Cđ¤ĆŤAĘĚNąčűÍ˝Ęč éŠB
âQF@ęĘÉlŤƍi}\Ý˝˘Éĺ¨ĹjAĘĚNąčűÍ˝Ęč éŠB
łçÉAlđćĘľ˝ĆŤAáŚÎiAABjĚQlĚęÍAÉiPAPjAiPAQjAiQAPjĚRĘč čܡBČşAlđćĘľÄĘĚNąčűđlŚÜˇB
âRF@iA,B,CjĚRlĚĆŤAĘĚNąčűÍ˝Ęč éŠB
âSFiA,B,CADjĚSlĚĆŤAĘĚNąčűÍ˝Ęč éŠB
âTFiA,B,CAEEEEjĚlĚĆŤAĘĚNąčűÍ˝Ęč éŠl@šćB
No1uuchinyanv
09/04 1715Ş@óM XV
uuchinyanv
09/07 1422Ş@óM XV 10/02
âPF
ܸSlĚęđlŚÄÝÜľĺ¤B
RlĚęÍCáÉ éć¤ÉC(1,1,1)C(1,1,3)C(1,2,2)C(1,2,3)CšŞC
ąęÉPlÁíéĆSlÚÍRlĚęđöł¸ÉtŻÁŚéĆlŚÄC
(1,1,1) ĚĆŤCPĘŠSĘľŠČ˘ĚĹC(1,1,1,1) Í (1,1,1,4) Ě 2 ĘčC
(1,1,3) ĚĆŤCRĘŠSĘľŠČ˘ĚĹC(1,1,3,3) Í (1,1,3,4) Ě 2 ĘčC
(1,2,2) ĚĆŤCQĘŠSĘľŠČ˘ĚĹC(1,2,2,2) Í (1,2,2,4) Ě 2 ĘčC
(1,2,3) ĚĆŤCRĘŠSĘľŠČ˘ĚĹC(1,2,3,3) Í (1,2,3,4) Ě 2 ĘčC
ąęš×ÄČĚĹ 4 * 2 = 8 ĘčšB
TlĚęŕŻlĹCĚƨčB
(1,1,1,1) ĚĆŤCPĘŠTĘľŠČ˘ĚĹC(1,1,1,1,1) Í (1,1,1,1,5) Ě 2 ĘčC
(1,1,1,4) ĚĆŤCSĘŠTĘľŠČ˘ĚĹC(1,1,1,4,4) Í (1,1,1,4,5) Ě 2 ĘčC
(1,1,3,3) ĚĆŤCRĘŠTĘľŠČ˘ĚĹC(1,1,3,3,3) Í (1,1,3,3,5) Ě 2 ĘčC
(1,1,3,4) ĚĆŤCSĘŠTĘľŠČ˘ĚĹC(1,1,3,4,4) Í (1,1,3,4,5) Ě 2 ĘčC
(1,2,2,2) ĚĆŤCQĘŠTĘľŠČ˘ĚĹC(1,2,2,2,2) Í (1,2,2,2,5) Ě 2 ĘčC
(1,2,2,4) ĚĆŤCSĘŠTĘľŠČ˘ĚĹC(1,2,2,4,4) Í (1,2,2,4,5) Ě 2 ĘčC
(1,2,3,3) ĚĆŤCRĘŠTĘľŠČ˘ĚĹC(1,2,3,3,3) Í (1,2,3,3,5) Ě 2 ĘčC
(1,2,3,4) ĚĆŤCSĘŠTĘľŠČ˘ĚĹC(1,2,3,4,4) Í (1,2,3,4,5) Ě 2 ĘčC
ÇCSlĚęĚep^[ĚĹşĘĚĘŠTĘĚ 2 Ęč¸ÂČĚĹC8 * 2 = 16 ĘčC
ČşŻlÉľÄC
UlĚęÍ 16 * 2 = 32 ĘčCVlĚęÍ 32 * 2 = 64 ĘčCWlĚęÍ 64 * 2 = 128 ĘčC
ÉČčܡB
âQF
âPFćčžçŠĹˇŞDDD
n lĚęÍCn-1 lĚęĚep^[ĚĹşĘĚĘŠĘĚ 2 Ęč¸ÂČĚĹC
Nąčžép^[Í n-1 lĚęĚ 2 {šB
ąĚąĆĆâPFĚĘŠçCwIA[@ĹC2^(n-1)
ĘčCÉČčܡB
âRF
lđćʾȢęĚep^[ÉÖľÄC
(1,1,1) ĚĆŤC(1,1,1) Ě 1 ĘčC
(1,1,3) ĚĆŤC(1,1,3), (1,3,1), (3,1,1) Ě 3 ĘčC
(1,2,2) ĚĆŤC(1,2,2), (2,1,2), (2,2,1) Ě 3 ĘčC
(1,2,3) ĚĆŤC(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1) Ě 6 ĘčC
ąęš×ÄČĚĹC1 + 3 + 3 + 6 = 13 ĘčCÉČčܡB
âSF
âPFĚĹćčSlĚlđćʾȢęĚp^[ÍŞŠÁĢéĚĹCťęÉÎľÄC
(1,1,1,1) ĚĆŤC1 ĘčC
(1,1,1,4),
(1,2,2,2) ĚĆŤC4 Ęč¸ÂĚ 4 * 2 = 8 ĘčC
(1,1,3,3) ĚĆŤC4C2 = 6 ĘčC
(1,1,3,4),
(1,2,2,4), (1,2,3,3) ĚĆŤC4!/2!1!1! = 12 Ęč¸ÂĚ 12 * 3 = 36 ĘčC
(1,2,3,4) ĚĆŤC4! = 24 ĘčC
ąęš×ÄČĚĹC1 + 8 + 6 + 36 + 24
= 75 ĘčCÉČčܡB
âTF
âQFĚrĚĘđîÉTlĚęđvZľÄÝéĆC
(1,1,1,1,1)
ĚĆŤC1 ĘčC
(1,1,1,1,5),
(1,2,2,2,2) ĚĆŤC5C1 = 5 Ęč¸ÂĚ 5 * 2 = 10 ĘčC
(1,1,1,4,4),
(1,1,3,3,3) ĚĆŤC5C2 = 10 Ęč¸ÂĚ 10 * 2 = 20 ĘčC
(1,1,1,4,5),
(1,2,2,2,5), (1,2,3,3,3) ĚĆŤC5!/3!1!1! = 20 Ęč¸ÂĚ 20 * 3 = 60 ĘčC
(1,1,3,3,5),
(1,1,3,4,4), (1,2,2,4,4) ĚĆŤC5!/2!2!1! = 30 Ęč¸ÂĚ 30 * 3 = 90 ĘčC
(1,1,3,4,5),
(1,2,2,4,5), (1,2,3,3,5),(1,2,3,4,4)
ĚĆŤC5!/2!1!1!1! = 60 Ęč¸ÂĚ 60 * 4 = 240 ĘčC
(1,2,3,4,5)
ĚĆŤC5! = 120 ĘčC
ąęš×ÄČĚĹC1 + 10 + 20 + 60 +
90 + 240 + 120 = 541 ĘčCÉČčܡB
ąĚű@đłçÉąŻéąĆŕÂ\šŞC
KĽŤŞŠŚÄąČ˘ĚĹCűjđĎŚÄQťŽđÝÄÝܡB
n lĚęđ f(n) ĘčƾܡB
ĘĚźʪ k ĘĚĆŤÍCk ĘćčăĘĚlÍ k-1 l˘ÜˇŞC
ąęçĚlđIÔĚÉ nC(k-1) ĘčĹCcčĚl͡×Ä k ĘÉČčܡB
ťľÄCk ĘćčăĘĚlĚĘĚęĚÍ f(k-1) ĘčšB
ťąĹC
f(n) = °[k=1,n]{nC(k-1) * f(k-1)}C
ĆČčܡB˝žľCžçŠÉCf(1) = 1CČĚĹCf(0) = 1CƾܡB
ąĚQťŽĹvZˇéĆC
PlĚęC
f(1) = nC0
* f(0) = 1 * 1 = 1 ĘčC
QlĚęC
f(2) = 2C0
* f(0) + 2C1 * f(1) = 1 * 1 + 2 * 1 = 1 + 2 = 3 ĘčC
RlĚęC
f(3) = 3C0
* f(0) + 3C1 * f(1) + 3C2 * f(2)
= 1 * 1 + 3
* 1 + 3 * 3 = 1 + 3 + 9 = 13 ĘčC
SlĚęC
f(4) = 4C0
* f(0) + 4C1 * f(1) + 4C2 * f(2) + 4C3 * f(3)
= 1 * 1 + 4
* 1 + 6 * 3 + 4 * 13 = 1 + 4 + 18 + 52 = 75 ĘčC
TlĚęC
f(5) = 5C0
* f(0) + 5C1 * f(1) + 5C2 * f(2) + 5C3 * f(3) + 5C4 * f(4)
= 1 * 1 + 5
* 1 + 10 * 3 + 10 * 13 + 5 * 75 = 1 + 5 + 30 + 130 + 375 = 541 ĘčC
DDD
ľÍvZŞyÉČčÜľ˝B
˝žCcOČŞçCąĚQťŽđđ˘Ä f(n) đ n ĚŽĹŤşšéŠÜĹÍŞŠÁĢܚńB
ȨClđćʾȢâQFĚęÉÍ nC(k-1) ŞsvČĚĹC
f(n) = °[k=1,n]{f(k-1)} = °[k=1,n-1]{f(k-1)} +
f(n-1) = Cf(n-1) + f(n-1) = 2 * f(n-1)C
f(1) = 1 ČĚĹCf(n) = 2^(n-1) ĘčCĆČÁÄCâQFĚĘđÄťľÜˇB
(Ęđ)
ăLÜĹĚđđ
ĚŹęłńÉÁ˝ĚšŞCłđĹÍ Á˝ŕĚĚC
lßŘęČŠÁ˝ŞČÇĚV˝Čđ@ĚACfBAđ¸ŤÜľ˝B
ťęÍCŻĘĚlŞčđÂČŽCƢ¤ŕĚšB
čđÂȢĹS[ˇéCĆC[WˇéƢ˘Ĺľĺ¤B
ŔÍąĚű@ÍŕęxÍlŚ˝ĚšŞC
żĺÁĆľ˝lŚá˘Šç¤Ü˘ŠČ˘ĆvÁÄľÜÁ˝ŕĚĹľ˝B
ąęđqgÉüßÄlŚźľÄCżĹˇŞáą
Ú_Şá¤đ@đv˘tŤÜľ˝B
ťęÍCŻĘĚlÉÚˇéCƢ¤Av[`šB
¨lŃ
ĚŹęŠçFČş102úßă7ź @ÇÁľÜľ˝BSĚ߸šB\ľó čÜšńĹľ˝
ęĘÉ n lĚęĹlŚÜˇB
PĘĚlÍK¸˘éĚĹąęđ p lƾܡB
ˇéĆÍ p+1 ĘĹˇŞąęŞ q lCÍ
p+q+1 ʪ r lCcCƾܡB
ąĚĆŤCn = p + q + r + cCŞ˘ŚÄ˘ÜˇB
tÉCn đťęŠgÍ˘ÂŠĚ 1 ČăĚŽĚaCn = p + q + r + cCĆľÄC
n ŠgÍCPĘŞ n lC
n = p +
q + r + cCÍCPĘĚlŞ p lCp+1 ĘŞ q lCp+q+1 ĘŞ r lCcC
ĆlŚęÎCĘĚp^[ŞęÓÉÜčܡB
ÂÜčCĘĚp^[Ć n ĚťęŠgđÜŢ 1 ČăĚŽĚaÖĚŞđŞPÎPÉξĢܡB
łçÉCąĚaÖĚŞđÍC
n ÉÎľÄC1 1 1 cn Âc 1 1 1 đlŚC˘ÂŠĚ 1 Ć 1 ĚÔÉ + đ˛ÝÝC
+ đüę¸ÉÔĚÜÜĚ 1 ĚWÜčđŤľÄŽÉˇęÎCaÖĚŞđĆPÎPÉξܡB
ťąĹCaÖĚŞđÍC1 Ć 1 ĚÔŞ n-1 Ó éĚĹ 2^(n-1) ĘčšB
ąęćčCĘĚp^[ŕ 2^(n-1) Ęč éąĆÉČčܡB
lđćʾȢęÍCąĚp^[ťĚŕĚČĚĹC2^(n-1) ĘčCÉČčܡB
lđćʡéęÍCep^[ÉlđčÄéCŔ×éCńÉČéĚĹC
°[n=p+q+r+cCp,q,r,... Í 1 ČăĚŽ]{n!/(p!q!r!c)} ĘčC
ÉČčܡB
ľáđŚľÜľĺ¤B
RlĚę
3
= 1 1 1
= 3CPĘŞRlC
= 1 +
(1 1) = 1 + 2CPĘŞPlCQĘŞQlC
= (1 1)
+ 1 = 2 + 1CPĘŞQlCRĘŞPlC
= 1 + 1
+ 1 = CPĘŞPlCQĘŞQlCRĘŞPlC
lđćʾȢęC2^2 = 4 ĘčC
lđćʡéęC3!/3! + 3!/1!2! + 3!/2!1! + 3!/1!1!1! = 1 + 3 + 3 + 6 = 13 ĘčC
ÉČčܡB
SlĚę
4
= 1 1 1
1 = 4CPĘŞSlC
= 1 +
(1 1 1) = 1 + 3CPĘŞPlCQĘŞRlC
= (1 1)
+ (1 1) = 2 + 2CPĘŞQlCRĘŞQlC
= (1 1
1) + 1 = 3 + 1CPĘŞRlCSĘŞPlC
= 1 + 1
+ (1 1) = 1 + 1 + 2CPĘŞPlCQĘŞPlCRĘŞQlC
= 1 +
(1 1) + 1 = 1 + 2 + 1CPĘŞPlCQĘŞQlCSĘŞPlC
= (1 1)
+ 1 + 1 = 2 + 1 + 1CPĘŞQlCRĘŞPlCSĘŞPlC
= 1 + 1
+ 1 + 1CPĘŞPlCQĘŞPlCRĘŞPlCSĘŞPlC
lđćʾȢęC2^3 = 8 ĘčC
lđćʡéęC
4!/4! +
4!/1!3! + 4!/2!2! + 4!/3!1! + 4!/1!1!2! + 4!/1!2!1! + 4!/2!1!1! + 4!/1!1!1!1!
= 1 + 4
+ 6 + 4 + 12 + 12 + 12 + 24 = 75 ĘčC
ÉČčܡB
TlĚę
ľČŞľťęÉíšÄŞđĚÔđľĎŚÜˇB
5
= 5C
= 4 + 1
= 1 + 4C
= 3 + 2
= 2 + 3C
= 3 + 1
+ 1 = 1 + 3 + 1 = 1 + 1 + 3C
= 2 + 2
+ 1 = 2 + 1 + 2 = 1 + 2 + 2C
= 2 + 1
+ 1 + 1 = 1 + 2 + 1 + 1 = 1 + 1 + 2 + 1 = 1 + 1 + 1 + 2C
= 1 + 1
+ 1 + 1 + 1C
lđćʾȢęC2^4 = 16 ĘčC
lđćʡéęC
5!/5! +
5!/4!1! * 2 + 5!/3!2! * 2 + 5!/3!1!1! * 3 + 5!/2!2!1! * 3 + 5!/2!1!1!1! * 4 +
5!/1!1!1!1!1!
= 1 +
10 + 20 + 60 + 90 + 240 + 120 = 541 ĘčC
ÉČčܡB
ČăćčžçŠĹˇŞCąĚű@Ĺâčđđ˘ÄÝéĆDDD
âPF
2^7 =
128 ĘčB
âQF
2^(n-1)
ĘčB
âRF
3!/3! +
3!/1!2! + 3!/2!1! + 3!/1!1!1! = 1 + 3 + 3 + 6 = 13 ĘčB
âSF
4!4! + 4!/1!3!
+ 4!/2!2! + 4!/3!1! + 4!/1!1!2! + 4!/1!2!1! + 4!/2!1!1! + 4!/1!1!1!1!
= 1 + 4
+ 6 + 4 + 12 + 12 + 12 + 24 = 75 ĘčB
âTF
lĚęĚÍC
°[n=p+q+r+cCp,q,r,... Í 1 ČăĚŽ]{n!/(p!q!r!c)} ĘčB
Ü˝CQťŽĚđ@ĹĚ f(n) ÍC
f(n) = °[n=p+q+r+cCp,q,r,... Í 1 ČăĚŽ]{n!/(p!q!r!c)}C
šBťľÄC
f(n) = °[k=1,n]{nC(k-1)
* f(k-1)}
= °[k=1,n]{nC(k-1)
* °[k-1=p+q+r+cCp,q,r,... Í 1 ČăĚŽ]{(k-1)!/(p!q!r!c)}}
= °[k=1,n]{°[k-1=p+q+r+cCp,q,r,... Í 1 ČăĚŽ]{n!/(n-k+1)!(k-1)! * (k-1)!/(p!q!r!c)}}
= °[k=1,n]{°[k-1=p+q+r+cCp,q,r,... Í 1 ČăĚŽ]{n!/((n-k+1)!p!q!r!c)}}
n-k+1 =
s ƨĆCs Í 1 ČăĚŽĹC
n =
(k-1) + s = (p + q + r + c) + s = s + p + q + r + cC
ČĚĹC
= °[n=s+p+q+r+cCs,p,q,r,... Í 1 ČăĚŽ]{n!/(s!p!q!r!c)}}C
s ->
pCp -> qCq -> rCr
Í c ĚęCĆuŤˇŚęÎC
= °[n=p+q+r+cCp,q,r,... Í 1 ČăĚŽ]{n!/(p!q!r!c)}}C
ĆČÁÄCmŠÉQťŽđ˝ľÜˇB
ȨCĹĚđ@Ć(Ęđ)đä×éĆC
lđćʾȢęÍĺŤČˇÍČłť¤ĹˇŞC
lđćʡéęÜĹlŚéĆ(Ęđ)ĚűŞŠĘľŞćlŚâˇ˘ĹˇB
˝žClđćʡéęĹlŞŚéĆvZŞĺĎÉČčܡŞC
QťŽĚűŞľyŠŕmęÜšńB
(´z)
lđćʾȢęÉÍČPČŽÉČéĚÍÓOĹľ˝B
lđćĘľ˝ęÍĄęÂlßŘęÜšńĹľ˝B
ČPČŽÉČéĚŠČDDD
ąĚăÉđđÁÄC¸˘˝ÔM[É Á˝ACfBAđîÉ(Ęđ)đÇÁľÜľ˝B
mŠÉąĚlŚűĚűŞŠĘľŞćXbLľÄ˘ÜˇB
˝žClđćĘľ˝ęĚęĘŽÍČPÉÍČ蝤ÉȢšËB
ť¤ČéĆCŔpăÍQťŽŕŤČ˘Ćv˘ÜˇB
NO2ulcž¤v @@09/15 1418Ş@óM XV 10/02
âPD
@@(PCPCPCPCPCPCPCP)
@@(PCPCPCPCPCPCPCW)
@@(PCPCPCPCPCPCVCV)
@@(PCPCPCPCPCPCVCW)
@@(PCPCPCPCPCUCUCU)
@@EEE
Ěć¤ÉCÔÚĆ({P)ÔÚĚlĚĘÍCľ˘ŠľČ˘ŠĚQĘč éD
@Wl˘éĚĹCSĹC
@@QVPQWiĘčj
âQD
@âPĆŻlÉCQ|PĘčD
ÉâTđđD
âTD
@
ŞíŢ éęĚgšđơéĆC
@@PPP
@@@iˇ×ÄPj
@@QQ|QbPEP
@@@iPŞÂC`ŞÂiP`
jj
@@RR|RbPEP|RbQEQ
@@@iPŞÂC`ŞÂCaŞÂiP`a
jj
@@SS|SbPEP|SbQEQ|SbRER
@@@iPŞÂC`ŞÂCaŞÂCbŞÂiP`ab
jj
@@TT|TbPEP|TbQEQ|TbRER|TbSES
@@@iPŞÂC`ŞÂCaŞÂCbŞÂCcŞÂiP`abc
jj
@@EEE
@@|bPEP|bQEQ|bRER|EEE|b|P|P
@@@iPCQCRCEEECŞP¸Âj
@ßégšÍC
@@P{Q{R{EEE{iĘčj
âRD
@âTɨ˘ÄCRơéD
@@PP
@@QQR|QbPEPW|QU
@@RRR|RbPEP|RbQEQQV|R|PWU
@@P{Q{RP{U{UPRiĘčj
âSD
@âTɨ˘ÄCSơéD
@@PP
@@QQS|QbPEPPU|QPS
@@RRS|RbPEP|RbQEQWP|R|SQRU
@@SSS|SbPEP|SbQEQ|SbRERQTU|S|WS|PSSQS
@@P{Q{R{SP{PS{RU{QSVTiĘčj
NO3uNŤĚ¨śłńv 09/19 2145Ş@óM XV
uNŤĚ¨śłńv
09/26 0914Ş@óM XV 10/02
338đ@NŤĚ¨śłń
Ś lđ1()Ĺ\ľÜˇB
Ś ąąĹÍAĘÉˇŞ éĆŤÉAŤÚÉJ}g,hđüęAȢƍ͹ŻÄąĆɾܡB
â0
3lĚęĚĘĚNąčűđlŚÜˇB
lĆlĆĚÔgvhŞ2 čܡB
i1v1v1j
ťĚ2ÂĚÔÉĘˇŞ éŠAȢŠĚęĚđŚÜˇB
0FÇąÉŕʡŞČ˘ĆŤASő1ĘšB@i111jĽĽĽĽĽĽĽĽĽĽĽĽĽĽĽĽĽ Ęč
1FĘˇĚ éĆąëŞ1 éB@@@@@@i1C22jAi11C3jĽĽĽĽĽĽ Ęč
2Fˇ×ÄÉĘˇŞ éB@@@@@@@@@@i1C2C3jĽĽĽĽĽĽĽĽĽĽĽĽĽ Ęč
ČăŠçA ĘčšB
4lĚęĚĘĚNąčűđlŚÜˇB
3lÚÜĹĚĘĚNąčűÍAăĚ4ĘčšB
4lÚĚ1lŞŚéĆAĘĚíŢÍAťĚÜÜŠA1ÂŚéŠĚÇżçŠĹˇB
iĘĚíŢŞ¸éąĆÍ čÜšńj
nlĚĆŤĚęĚđ ơéĆA ČĚĹA4lĚęÍA2~48 ĘčšB
Ü˝A ĘčšB
â1
8lĚĆŤÍA ĘčšB
â2
ĘčšB
ŚŚ@śŠçJ}ÜĹŞŻĘƾܡB
ŚŚ@nlĚĘĚNąčűĹAkíŢĚĆŤĚęĚđf(n,k)Ĺ\ˇąĆɾܡB
â2.5
2lĚĘĚNąčűđlŚÜˇB
0F1íŢĚĆŤASőŻśĘšB@iABj
1F2íŢĚĆŤA@@@@@@@@@@iACBjAiBCAj
ÂÜčA(2,1)1Af(2,2)2 ČĚĹAv3ĘčšB
â3
3lÚĚCĚĘĚNąčűđlŚÜˇB
ĘĚíŢĚŞĎíçȢŠA1íŢŚéŠAĚÇżçŠĹˇ
1íŢĚĆŤAf(3,1)1 ÍAžçŠĹˇB
2íŢĚĆŤÍAf(2,1)Ě1íŢĚśEĚĘÉüéŠAf(2,2)Ě2íŢĚÇżçŠĆŻĘšB
3íŢĚĆŤÍAf(2,2)Ě2íŢĚÔŠśEĚĘÉüéĆlŚÄAf(3,3)3~f(2,2)3~2~13!6
ÂÜčAęĚÍA
â4
4lĚĆŤđlŚÜˇB
1íŢĚĆŤAf(4,1)1ÍAžçŠĹˇB
2íŢĚĆŤÍAf(3,1)Ě1íŢĚśEĚĘÉüéŠAf(3,2)Ě2íŢĚÇżçŠĆŻĘšB
3íŢĚĆŤÍAf(3,2)Ě2íŢĚÔŠśEĚĘÉüéAÜ˝Íf(3,3)Ě3íŢĚÇąŠĆŻĘšB
4íŢĚĆŤÍAf(3,3)Ě3íŢĚÔŠśEĚĘÉüéĆlŚÄAf(4,4)4~f(3,3)4~3!4!24
ÂÜčAęĚÍA
â4.5
ܸAĄÜĹ̹ƊçAĚQťŽđmFľÜˇB
1lŚ˝ĆŤÍA1ÂĘĚíŢŞŚéŠAÇąŠĚŻĘĚlŞŚéŠĚÇżçŠĹˇB
ąĚQťŽŠçĚ\ĚvZŞĹŤÜˇB
ąĚ\ĹAf(n,1)1Af(n,n)n! šB
Ü˝AąĚ\ÍAĚ\Ěć¤Č\˘đľÄ˘ÜˇB
GNZČÇđp˘ęÎAŽĚRs[ĹČPÉěŹĹŤÜˇB
ńčŠçĚŽđmFľÄ¨ŤÜˇB
Kˇ ŞŞŠÁĢéń
ĚęĘĚŽđmFľÄ¨ŤÜˇB
â5
ĘĚí޲Ćɲ×ÄÝܡB
Ek1ĚĆŤAf(n,1)1ÍžçŠĹˇB
Ek2ĚĆŤÍA1ĘŞ1lĚĆŤA2lĚĆŤA3lĚĆŤAĽĽĽĆ˘¤ć¤ÉđŚÜˇB
Ek3ĚĆŤĚQťŽÉăĚĘđp˘éĆA(n4š)
ćÁÄAnđ1¸çľ˝ŽĆˇđĆéĆAKˇĚŽŞąŻÜˇB
ąĚźÓđ ĹčܡB
ąąĹA
ƨĆA
źÓÉ3đŤˇĆA
ÍAöä3/2ĚäńšB
KˇŞ2ÂĚäń̡ČĚĹA
ČăĚć¤ÉßçęܡŞAvZŞĺĎšB
ik4ĚĆŤAčÔÍiiɌܡj
ĘĚű@đlŚÜˇB
1ĘĚlŞA1lĚĆŤA2lĚĆŤA3lĚĆŤAĽĽĽĆ˘¤ć¤ÉđŚÄÝܡB
ˇéĆA
Ěć¤ÉŠČčyÉōܡB
Ek4ĚĆŤŕA1ĘĚlŞA1lĚĆŤA2lĚĆŤA3lĚĆŤAĽĽĽĆ˘¤ć¤ÉđŚÜˇB
ČăĚć¤ÉōܡŞAž˘ÔĺĎÉČčܡB
ťąĹÜ˝ĘĚű@đlŚÜˇB
ĘđŔ×ÄÝܡB
áŚÎAk2ĚĆŤAĘÍ2íŢšB
ăĘŠşĘĚIđÍA2nĘč čܡB
ťľÄAăĘžŻA é˘ÍşĘžŻÉWÜéęĚđř˘Ä˘ÜˇB
k3ĚĆŤÍAăşĚ3íŢđIÔęĚŠçAĹĺ2íŢÜĹĚęĚA1íŢžŻĚęĚĹ⳾ĢܡB
ŚÄgÝíšĚLđp˘ÄŤźľÜˇB
ąĚs~bh^ÉŔÔĚvŞßéšB
ąęđwŞŻśÉČéć¤ÉAEşŞčĚÎßüĹŘčA1¸²×ĢŤÜˇB
EܸAԢƹëÍA
EňFĚĆąëÍA
EŠFĚĆąëÍA
EEE
EŠÎĚĆąëÍA
EEE
ČăđÜĆßéĆA
łÄAvZĘĚo1,3,13,75,541,ĽĽĽpÉÍÇńČÓĄŞ éĚŠÍAŞŠčÜšńB
NO4uńxĐŻŘv 09/24 1615Ş@óM
XV 10/02
â1F2^7=128 Ęč ()
â2F2^(n-1) Ęč ()
â3F13 Ęč ()
â4F75 Ęč ()
â5FlđćʡéęCnlŤƍĚĘĚNąčűŞSĹ b(n) Ęč éơéD
b(n)ĚQťŽF
b(0)=1C
b(n)=°[k=0,n-1]comb(n,k)*b(k)D()
b(n)đCVO}ađ2ńgÁÄŤ\ˇF
b(n)=°[k=1,n]°[j=0,k]comb(k,j)*(j^n)*(-1)^(k-j)D()
b(n)đCŠRÎ e ĆCKEXL(floorÖ)đgÁÄŤ\ˇF
b(n)=floor(n!*(n!*8^n)^n/(2-e^(1/(n!*8^n))))-(n!*8^n)*floor(n!*(n!*8^n)^(n-1)/(2-e^(1/(n!*8^n))))D()
xĚÖf(x)đWJľ˝ĆŤĚx^nĚWđ [x^n]f(x) Ć\ˇąĆɡéD
lđćʾȢęCnlŤƍĚĘĚNąčűŞSĹ
a(n) Ęč éơéD
â1F
a(8)
=[x^8]((x+x^2+x^3+ c)+(x+x^2+x^3+ c)^2+ c +(x+x^2+x^3+ c)^8)
=[x^8]((x+x^2+x^3+ c)+(x+x^2+x^3+c)^2+(x+x^ 2+x^3+$ B!D)^3+ c)
=[x^8](x/(1-x)+(x/(1-x))^2+(x/(1-x))^3+ c)
=[x^8](x/(1-x)/(1-x/(1-x)))
=[x^8](x/(1-2*x))
=[x^7](1/(1-2*x))
=2^7
=128D
â2F
a(n)
=[x^n]((x+x^2+x^3+ c)+(x+x^2+x^3+ c)^2+(x+x^2+x^3+ c)^3+ c)
=[x^n](x/(1-2*x))
=[x^(n-1)](1/(1-2*x))
=2^(n-1)D
â3F
b(3)
=[x^3](3!*(x+x^2/2!+x^3/3!)+3!*(x+x^2/2!+x^3/3!)^2+3!*(x+x^2/2!+x^3/3!)^3)
=13
â4F
b(3)
=[x^4](4!*(x+x^2/2!+x^3/3!+x^4/4!)+4!*(x+x^2/2!+x^3/3!+x^4/4!)^2+4!*(x+x^2/2!+x^3/3!+x^4/4!)^3+4!*(x+x^2/2!+x^3/3!+x^4/4!)^4)
=75
â5F
b(n)
=[x^n](n!*(x+x^2/2!+ c +x^n/n!)+n!*(x+x^2/2!+ c +x^n/n!)^2+ c +n!*(x+x^2/2!+ c +x^n/n!)^n)
=n!*[x^n]((x+x^2/2!+ c +x^n/n!)+(x+x^2/2!+ c +x^n/n!)^2+ c +(x+x^2/2!+ c +x^n/n!)^n)
=n!*[x^n]((x+x^2/2!+ cuEw)
JEE°EJŔc
+x^n/n!)^2+ c )
=n!*[x^n]((x+x^2/2!+ c )+(x+x^2/2!+ c )^2+ c )
=n!*[x^n]((e^x - 1)+(e^x - 1)^2+ c )
=n!*[x^n]((e^x - 1)/(1-(e^x - 1)))
=n!*[x^n]((e^x - 1)/(2-e^x))
=n!*[x^n](1/(2-e^x) - 1)
=n!*[x^n](1/(2-e^x))D
ćÁÄCb(n)/(n!)=[x^n](1/(2-e^x))D
B(x)=°[n=0,](b(n)/(n!))*x^nC b(0)=1 ƨĆC
B(x)
=°[n=0,]([x^n](1/(2-e^x))*x^n)
=(1/(2-e^x))D
ćÁÄC(2-e^x)*B(x)=1D
ąĚŽĚźÓĚ x^n ĚWđärľÄC
2*b(n)/(n!)-°[k=0,n]*b(k)/(k!)*(1/((n-k)!))=0D
ćÁÄCb(n)/(n!)-°[k=0,n-1]*b(k)/(k!)*(1/((n-k)!))=0D
ÂÜčCb(n)=n!*°[k=0,n-1]*b(k)/(k!*(n-k)!)=°[k=0,n-1]comb(n,k)*b(k)D
Ü˝Cb(n)=n!*[x^n]((e^x - 1)+(e^x - 1)^2+ c +((e^x - 1)^n)) Ĺ éąĆĆC
[x^n](e^x - 1)^k
=[x^n](°[j=0,k]comb(k,j)*(e^(j*x))*(-1)^(k-j))
=°[j=0,k]comb(k,j)*(j^n/(n!))*(-1)^(k-j)
Ĺ éąĆĆŠçC
b(n)=°[k=1,n]°[j=0,k]comb(k,j)*(j^n)*(-1)^(k-j)D
B(x)=°[n=0,](b(n)/(n!))*x^n ćčC
n!*B(x)/(x^n)=°[k=1,n](n!/(n-k)!)*b(n-k)/(x^k) + b(n) +
°[k=1,](n!/(n+k)!)*b(n+k)*(x^k)D
x=1/(n!*8^n) đăüľÄC
n!*B(1/(n!*8^n))*(n!*8^n)^n = °[k=1,n](n!/(n-k)!)*b(n-k)*(n!*8^n)^k
+ b(n) + °[k=1,](n!/(n+k)!)*b(n+k)*(1/(n!*8^n))^kD
ąąĹC°[k=1,n](n!/(n-k)!)*b(n-k)*(n!*8^n)^k Í (n!*8^n) Ě{D
ܽCb(n+j)(n+j)!*2^(n+j)
(j=0,1,2,c) ÉÓˇéĆC
°[k=1,](n!/(n+k)!)*b(n+k)*(1/(n!*8^n))^k
°[k=1,](n!/(n+k)!)*(n+k)!*2^(n+k)*(1/(n!*8^n))^k
°[k=1,]2^(n+k)*(1/(8^n))^k
=(2^n)*°[k=1, $B!g] (2/(8^n))^k
=(2^(n+1))/(8^n - 2)
1D
ćÁÄCb(n)Í
n!*B(1/(n!*8^n))*(n!*8^n)^n ĚŽŞđ (n!*8^n) ĹÁ˝ĆŤĚ]čÉČÁĢéąĆŞíŠéD
ćÁÄC
b(n)
=floor(n!*B(1/(n!*8^n))*(n!*8^n)^n)-(n!*8^n)*floor(n!*B(1/(n!*8^n))*(n!*8^n)^(n-1))
=floor(n!*(n!*8^n)^n/(2-e^(1/(n!*8^n))))-(n!*8^n)*floor(n!*(n!*8^n)^(n-1)/(2-e^(1/(n!*8^n))))D
----------------------------------------------------------------------------------------------------
ĄńĚâčÉÖAľÄĚć¤ČâčđlŚÄ˘éĚšŞCKĽŤŞÂŠßÜšńD
lđćʾȢęC3lŤƍĚĘĚNąčűÍC
(1,1,1)C(1,1,3)C(1,2,2)C(1,2,3)
Ě4ĘčD
ąĚĆŤťęéđSÄŤľíšéĆC
(1+1+1)+(1+1+3)+(1+2+2)+(1+2+3)=19D
lđćʾȢęC4lŤƍĚĘĚNąčűÍC
(1,1,1,1)C(1,1,1,4)C(1,1,3,3)C(1,1,3,4)C(1,2,2,2)C(1,2,2,4)C(1,2,3,3)C(1,2,3 ,4)
Ě8ĘčD
ąĚĆŤťęéđSÄŤľíšéĆC
(1+1+1+1)+(1+1+1+4)+(1+1+3+3)+(1+1+3+4)+(1+2+2+2)+(1+2+2+4)+(1+2+3+3)+(1+2+3+4)=63D
ęĘÉClđćʾȢęCnlŤƍĚĘĚNąčűđSÄŤoľ˝ĆŤÉ
ťęéđSÄŤľíš˝ŕĚđC(n)ơéD
C(n)ÍÇĚć¤ÉŤ\łęéŠ
uńxĐŻŘv 09/25 2107Ş@óM
XV 10/02
ĚŹęFâTĚńÍPARAPRAVTATSPAEEEÍÇńČÓĄÉČéĚŠCŞŠčšB
ąĚÔMšB
â5ÍCńĚuÓĄvđŚéâčĹ Á˝ĚšŠH
âčśÉÍC
uiA,B,CAEEEEjĚlĚĆŤAĘĚNąčűÍ˝Ęč éŠl@šćBv
Ć čܡD
unlĚĆŤCĘĚNąčűÍ˝Ęč éŠv
Ƣ¤â˘ČĚšŠçC
uąĚńĚęĘÍÇĚć¤ÉŻéŠv
Ƣ¤Ó¤ÉÍđ߾ܾ˝D
ąĚńĚuÓĄvÍC
unlÉĘđÂŻéĆŤĚ CĘĚtŻűĚv
žĆv˘ÜˇD
unlđCĹĺnÂĚgÉŞŻÄCťęçĚgÉÔđtŻÄ
ćʡéű@ĚvƢ¤ąĆŕōܡD
ICŽńĺŤTÉÍCuFubini numbersvƢ¤
źĚŞÂŻçęÄo^łęĢܡËD
https://oeis.org/A000670
uńxĐŻŘv 10/01 1343Ş@óM
XV 10/02
924ÉŞMľ˝[ĚĹăÉĚć¤Č^âđŤÜľ˝D
uęĘÉClđćʾȢęCnlŤƍĚĘĚNąčűđSÄŤoľ˝ĆŤÉ
ťęéđSÄŤľíš˝ŕĚđC(n)ơéD
C(n)ÍÇĚć¤ÉŤ\łęéŠHv
ąĚ^âÉ¢ÄCC(n)đnĹ\ˇŽŞíŠčÜľ˝ĚĹC
ńđľÄ¨ŤÜˇD
C(n)=(n^2-n+4)*2^(n-2)-1@ĆŤ\łęܡD
ČăńÜĹD
NO5uɢÎčZ12v@@@10/03 0004Ş@óM
XV 10/03
âPF@WlĹ^Cđ¤ĆŤAĘĚNąčűÍ˝Ęč éŠB
âQF@ęĘÉlŤƍi}\Ý˝˘Éĺ¨ĹjAĘĚNąčűÍ˝Ęč éŠB
i}\Ćž¤ćčAŻśXRAÉоߍ¤StĚÉ˝˘P[XšËEEEBj
Ěć¤ÉlŚÜˇ
lđ
ÉśŠçŔ×ܡBEEEEiTj
EEEEiŞÂiljj
ąĚĚć¤ÉŻ
đŐ§ĹdŘčܡ
bbEEEE
ăĚę1ĘŞRlASĘŞSlWĘŞ-7lĆČčܡ
Ő§Şł˘ęÍSőŻ
ĹPĘ
SÄĚÔÉŐ§ŞüéęŻ
ŞČPĘŠçĘÜĹĆČčܡB
Ő§ĚüéęÍ-1Š(AŘZ)ĹAŐ§ĚĚP[XÍ0Šç-1ÜĹš
ÂÜčŐ§ĚüčűĚŞĘĚNąčűĚĆČčܡ
ćÁÄťĚÍ
n-1C0+n-1C1+
n-1C2+ n-1C3+ n-1C4+
n-1C5+ EEEEn-1Cn-1=°k=0¨n-1( n-1Ckj=2n-1ić2WĚaÉľ˘j
ćÁÄĘĚNąčűĚ
2n-1ĘčEEEâ2ń
8lĚÍn=8Ĺ
28-1=128ĘčEEEâ1ń
âRF@iA,B,CjĚRlĚĆŤAĘĚNąčűÍ˝Ęč éŠB
âSFiA,B,C,DjĚSlĚĆŤAĘĚNąčűÍ˝Ęč éŠB
âTFiA,B,C,EEEEjĚlĚĆŤAĘĚNąčűÍ˝Ęč éŠl@šćB
iTjĆŻlÉ
ĹŔ×ܡBąĚŻ
ÍǤŔ×Ä௜ĆlŚÜˇB
Ü˝AŐ§ĚüéęđśŠç1ÔÚA2ÔÚEEE-1ÔÚƾܡ
Đ˝ˇçnšÉvZľÄÝܡ
EŐ§Şł˘ę
Ső1ĘČĚĹ1Ęč
nC0
EŐ§Ş1{Ěę(n>1)
@@EŐ§Ş1ÔÚÉüéę
@@@1ĘÍnC1=nĘč čܡ
@@EŐ§Ş2ÔÚÉüéę
@@@1ĘÍnC2Ęč čܡ
@@EŐ§ŞmÔÚÉüéę
@@@1ĘÍnCmĘč čܡ
@@EŐ§Şn-1ÔÚÉüéę
@@@1ĘÍnCn-1=nĘč čܡ
EąęçĚaÍ
nC1+ nC2+ nC3+
nC4+ nC5+ EEEEnCn-1=°k=1¨n-1( nCkj=°k=0¨n ( nCkj- nC0- nCn=2n-2
EŐ§Ş2{Ěę(n>2)
@@E1{ÚĚŐ§Ş1ÔÚÉüéę
@@@1ĘÍnC1=nĘč čܡ
@@@@@@@ťęÉÎľ2{ÚĚŐ§Ş2ÔÚÉüéĆ
@@@@@@@@@2ĘÍn-1C1= n-1Ęč čܡ
@@@@@@@2{ÚĚŐ§Ş3ÔÚÉüéĆ
@@@@@@@@@2ĘÍn-1C2Ęč čܡ
@@@@@@@2{ÚĚŐ§Ş4ÔÚÉüéĆ
@@@@@@@@@2ĘÍn-1C3Ęč čܡ
@@@@@@@2{ÚĚŐ§Şn-1ÔÚÉüéĆ
@@@@@@@@@2ĘÍn-1Cn-2=
n-1Ęč čܡ
@@@@@@@2{ÚĚŐ§đ§Ä˝Ě
@@@@@@@@@2ĘĚťęűÍ
n-1C1+ n-1C2+ n-1C3+
n-1C4+ n-1C5+ EEEEn-1Cn-2=°k=1¨n-2( n-1Ckj=°k=0¨n-1 ( n-1Ckj- n-1C0- n-1Cn-1=2n-1-2
@@E1{ÚĚŐ§Ş2ÔÚÉüéę
@@@1ĘÍnC2Ęč čܡ
@@@@@@@ťęÉÎľ2{ÚĚŐ§Ş3ÔÚÉüéĆ
@@@@@@@@@3ĘÍn-2C1= n-2Ęč čܡ
@@@@@@@2{ÚĚŐ§Ş4ÔÚÉüéĆ
@@@@@@@@@3ĘÍn-2C2Ęč čܡ
@@@@@@@2{ÚĚŐ§Ş4ÔÚÉüéĆ
@@@@@@@@@3ĘÍn-2C3Ęč čܡ
@@@@@@@2{ÚĚŐ§Şn-1ÔÚÉüéĆ
@@@@@@@@@3ĘÍn-2Cn-3=
n-1Ęč čܡ
@@@@@@@2{ÚĚŐ§đ§Ä˝Ě
@@@@@@@@@3ĘĚťęűÍ
n-2C1+ n-2C2+ n-2C3+
n-2C4+ n-2C5+ EEEEn-2Cn-3=°k=1¨n-3( n-2Ckj=°k=0¨n-2 ( n-2Ckj- n-2C0- n-2Cn-2=2n-2-2
@@E1{ÚĚŐ§Ş3ÔÚÉüéę
@@@1ĘÍnC3Ęč čܡ
@@@@@@@ťęÉÎľ2{ÚĚŐ§Ş4ÔÚÉüéĆ
@@@@@@@@@4ĘÍn-3C1= n-3Ęč čܡ
@@@@@@@2{ÚĚŐ§Ş4ÔÚÉüéĆ
@@@@@@@@@4ĘÍn-3C2Ęč čܡ
@@@@@@@2{ÚĚŐ§Ş4ÔÚÉüéĆ
@@@@@@@@@4ĘÍn-3C3Ęč čܡ
@@@@@@@2{ÚĚŐ§Şn-1ÔÚÉüéĆ
@@@@@@@@@4ĘÍn-3Cn-4=
n-3Ęč čܡ
@@@@@@@2{ÚĚŐ§đ§Ä˝Ě
@@@@@@@@@4ĘĚťęűÍ
n-3C1+ n-3C2+ n-3C3+
n-3C4+ n-3C5+ EEEEn-3Cn-4=°k=1¨n-4( n-3Ckj=°k=0¨n-3 ( n-3Ckj- n-3C0- n-3Cn-3=2n-3-2
@@E1{ÚĚŐ§Ş4ÔÚÉüéę
@@@1ĘÍnC4Ęč čܡ
@@@@@@@ťęÉÎľ2{ÚĚŐ§Ş5ÔÚÉüéĆ
@@@@@@@@@5ĘÍn-4C1= n-4Ęč čܡ
@@@@@@@2{ÚĚŐ§Şn-1ÔÚÉüéĆ
@@@@@@@@@5ĘÍn-4Cn-5=
n-4Ęč čܡ
@@@@@@@2{ÚĚŐ§đ§Ä˝Ě
@@@@@@@@@5ĘĚťęűÍ
2n-4-2
@@E1{ÚĚŐ§Şn-2ÔÚÉüéę
@@@1ĘÍnCn-2Ęč čܡ
@@@@@@@ťęÉÎľ2{ÚĚŐ§Şn-1ÔÚÉüé(ľŠČ˘ĚšŞ)Ć
@@@@@@@@@n-1ĘÍn-(n-2)Cn-(n-1)=2Ęč čܡ
@@@@@@@2{ÚĚŐ§đ§Ä˝Ě
@@@@@@@@@n-1ĘĚťęűÍ
2n-(n-2)-2
ąęđŽˇéĆŐ§Ş2{Ěę
nC1(2n-1-2)+ nC2(2n-2-2)
+ nC3(2n-3-2) + nC4(2n-4-2)
+ nC5(2n-5-2)+EEE+ nCn-2(2n-(n-2)-2)
= nC1E2n-1+ nC2E2n-2 + nC3E2n-3 + nC4E2n-4 + nC5E2n-5+EEE+ nCn-2E2n-(n-2) -2(nC1+
nC2 + nC3+ nC4 +
nC5+EEE+ nCn-2)
= nC1E2n-1+ nC2E2n-2 + nC3E2n-3 + nC4E2n-4 + nC5E2n-5+EEE+ nCn-2E2n-(n-2) -2(nC0+nC1+
nC2 + nC3+ nC4 +
nC5+EEE+ nCn-2 + nCn-1+ nCn-
nC0- nCn-1- nCn)
= nC0E2n+ nC1E2n-1+ nC2E2n-2 + nC3E2n-3 + nC4E2n-4 + nC5E2n-5+EEE+ nCn-2E2n-(n-2) + nCn-1E2n-(n-1) +
nCnE2n-(n-0)- nC0E2n - nCn-1E2n-(n-1) -
nCnE2n-(n-0)-2(2n-
n - 2)
=3n- 2n -2n - 1-2(2n-
n - 2) n =3n-3E2n + 3EEEEii2+1) nĚ2WJđpj
EŐ§Ş3{Ěę(n>3)
@ Ő§Ş2{ĚĆŻlÉlŚéĆ
nC1Ľn-1C1 (n-2C1+
n-2C2+ n-2C3+ n-2C4+
n-2C5+EEE+ n-2Cn-3)
bbbbbbbEEEEbbiŐ§bÍ()ŕĚej
+nC1Ľn-1C2 (n-3C1+
n-3C2+ n-3C3+ n-3C4+EEE+ n-3Cn-4)@@
@@@@bbbbbbEEEEbb
+nC1Ľn-1C3 (n-4C1+
n-4C2+ n-4C3+ +EEE+ n-4Cn-5)
@@@@@ bbbbbEEEEbb
@@@@@@@@@@@@@@E
@@@@@@@@@@@@@@E
@@@@@@@@@@@@@@E
+nC1Ľn-1Cn-3(n-(n-2)Cn-(n-1))
bEEEEbbEEEEEEEi1j
+nC2Ľn-2C1 (n-3C1+
n-3C2+ n-3C3+ n-3C4+
n-3C5+EEE+ n-3Cn-4)
@bbbbbbEEEEbb
+nC2Ľn-2C2 (n-4C1+
n-4C2+ n-4C3+ n-4C4+EEE+ n-4Cn-5)@@
@@@ bbbbbEEEEbb
+nC2Ľn-2C3 (n-5C1+
n-5C2+ n-5C3+ +EEE+ n-5Cn-6)
@@@@@ bbbbEEEEbb
@@@@@@@@@@@@@@E
@@@@@@@@@@@@@@E
@@@@@@@@@@@@@@E
+nC2Ľn-2Cn-4(n-(n-2)Cn-(n-1))
@bEEEEbbEEEEEEEEi2j
+nC3Ľn-3C1 (n-4C1+
n-4C2+ n-4C3+ n-4C4+
n-4C5+EEE+ n-4Cn-5)
@bbbbbbEEEEbb
+nC3Ľn-3C2 (n-5C1+
n-5C2+ n-5C3+ n-5C4+EEE+ n-5Cn-6)@@
@@@ bbbbbEEEEbb
+nC3Ľn-3C3 (n-6C1+
n-6C2+ n-6C3+ +EEE+ n-6Cn-7)
@@@@@ bbbbEEEEbb
@@@@@@@@@@@@@@E
@@@@@@@@@@@@@@E
@@@@@@@@@@@@@@E
+nC3Ľn-3Cn-5(n-(n-2)Cn-(n-1))
bEEEEbbEEEEEEEEi3j
@@@@@@@@@@@@@@E
@@@@@@@@@@@@@@E
@@@@@@@@@@@@@@E
@@@@@@@@@@@@@@E
@@@@@@@@@@@@@@E
@@@@@@@@@@@@@@E
+ nC
n-3Ľn-(n-3)Cn-(n-1) (n-(n-2)Cn-(n-1))
EEEEbbbEEEEEEEEij
ąĚŽđČPɡé˝ßÉć¸ijĚi3{ÚĚէ̜¤ĚgÝíšjđŽľÄ˘ŤÜˇ
i1jĚeÉĚijŕđlŚÜˇBi1j1ÚĚijŕÍĚć¤ÉĎ`ōܡ
n-2C1+ n-2C2+ n-2C3+
n-2C4+ n-2C5+EEE+ n-2Cn-3
= n-2C0+n-2C1+ n-2C2+
n-2C3+ n-2C4+ n-2C5+EEE+ n-2Cn-3+
n-2Cn-2- n-2C0- n-2Cn-2
=2n-2-2
ŻlÉi1j2ÚČ~ĚijŕŕĚć¤ÉĎ`ōܡ
n-3C1+ n-3C2+ n-3C3+
n-3C4+EEE+ n-3Cn-4
=2n-3-2
n-4C1+ n-4C2+ n-4C3+
EEE+
n-4Cn-5
=2n-4-2
i1jÍAn-3 éĚĹĹăÍ
=2n-(n-2)-2=22-2=2
]ÁÄi1jÍĚć¤ÉĎ`ōܡ
nC1 (n-1C1(2n-2-2)+
n-1C2(2n-3-2)+ n-1C3(2n-4-2)+
n-1C4(2n-5-2)+ EEE+n-1Cn-3(22-2))
= nC1 ( (n-1C1E2n-2+
n-1C2E2n-3+ n-1C3E2n-4+
n-1C4E2n-5+ EEE+n-1Cn-3E22) -2 (n-1C1+ n-1C2+
n-1C3+ n-1C4+ EEE+n-1Cn-3)
)
= nC1 ( (n-1C0E2n-1+n-1C1E2n-2+
n-1C2E2n-3+ n-1C3E2n-4+
n-1C4E2n-5+ EEE+n-1Cn-3E22+n-1Cn-2E21+n-1Cn-1E20- n-1C0E2n-1-n-1Cn-2E21-n-1Cn-1E20) -2 (n-1C0+n-1C1+
n-1C2+ n-1C3+ n-1C4+
EEE+n-1Cn-3+n-1Cn-2+n-1Cn-1-n-1C0-n-1Cn-2-n-1Cn-1)
)
= nC1 ( (3n-1- 2n-1-2n+1)
-2 (2n-1- n-1) )
= nC1 (3n-1- 3Ľ2n-1+3)
ăŽijŕÍAn-1ĚĚŐ§2{ĆŻśČĚĹeŐÉđōܡ
@@@Ƣ¤Ĺi2jŽČ~Í
@@nC2 (3n-2- 3Ľ2n-2+3) EEEEi2j
@@nC3 (3n-3- 3Ľ2n-3+3) EEEEi3j
@@@@E
@@@@E
@@@@E
@@nCn-3 (3n-(n-3)-
3Ľ2
n-(n-3)+3)EEEEi@nCn-3Ľ6j
ąęçđŤľíšĎ`ˇéĆ
@@@nC1 (3n-1- 3Ľ2n-1+3)+nC2
(3n-2- 3Ľ2n-2+3)+nC3 (3n-3- 3Ľ2n-3+3)+ĽĽĽĽ+ nCn-3
(3 n-(n-3)- 3Ľ2 n-(n-3)+3)
= (nC1Ľ3n-1+nC2Ľ3n-2+nC3Ľ3n-3+ĽĽĽĽ+ nCn-3Ľ3 n-(n-3) )
-3 (nC1Ľ2n-1+nC2Ľ2n-2+nC3Ľ2n-3+ĽĽĽĽ+ nCn-3Ľ2 n-(n-3) )+
3 (nC1+nC2+nC3Ľ2n-3+ĽĽĽĽ+ nCn-3)
= (nC0Ľ3n+nC1Ľ3n-1+nC2Ľ3n-2+nC3Ľ3n-3+ĽĽĽĽ+ nCn-3Ľ3 n-(n-3) +
nCn-2Ľ3 n-(n-2) + nCn-1Ľ3 n-(n-1)+
nCnĽ3 n-(n-0) - nC0Ľ3n - nCn-2Ľ3 n-(n-2)-
nCn-1Ľ3 n-(n-1) - nCnĽ3 n-(n-0))
-3 (nC0Ľ2n+nC1Ľ2n-1+nC2Ľ2n-2+nC3Ľ2n-3+ĽĽĽĽ+ nCn-3Ľ2 n-(n-3) +
nCn-2Ľ2 n-(n-2) + nCn-1Ľ2 n-(n-1)+
nCnĽ2 n-(n-0)-nC0Ľ2n- nCn-2Ľ2n-(n-2)-nCn-1Ľ2 n-(n-1)-nCnĽ2 n-(n-0))
+ 3 (nC1+nC1+nC2+nC3Ľ2n-3+ĽĽĽĽ+ nCn-3+
nCn-2+ nCn-1+ nCn-nC0-nCn-2-nCn-1-nCn)
= (4n
- 3n - 32 (n2-n)-3n -1)
-3 (3n-
2n- 22(n2-n)-2n -1)
+ 3 (2n
-1-(n2-n)- n -1)
= 4n - 4Ľ3n +6Ľ2n -4
Ćč Ś¸ąąĹŐ§3{ÜĹĚĘđŽľÄÝܡ
Ő§0{@@1Ľ1 n-1Ľ0n@@@Ęč
Ő§1{@@1Ľ2n-2Ľ1n+1Ľ0n@@Ęč
Ő§2{@@1Ľ3n-3Ľ2n + 3Ľ1n-1Ľ0n@@Ęč
Ő§3{@@1Ľ4n - 4Ľ3n
+6Ľ2n -4Ľ1n+1Ľ0n@@Ęč
ąĚĘđŠéĆlđnlAŐ§Ě{đtĆľ˝AĘĚNąčűĚpÉÍĚŽŞ\złęܡ
p=°i=-1¨t((-1)i+1(t-i)n( t+1Ci+1))@@@@@@@@@@@@@@@@@
Ü˝AlđnlAŐ§Ě{tđ0ŠçtfĆľ˝AĘĚNąčűĚPÉÍĚŽŞ\złęܡ
P=°t=0¨tf (°i=-1¨t((-1)i+1(t-i)n( t+1Ci+1)))
˘ÜAčÓŠçtf=n-1ČĚĹăŽÍĚć¤ÉČčܡ
P=°t=0¨n-1 (°i=-1¨t((-1)i+1(t-i)n( t+1Ci+1)))ĽĽĽ@
ąĚŽÍivZŞÔáÁĢȯęÎjĆč Ś¸n=4ÜĹÍ^ČĚĹ
3lĚ
1+23-2+33-3Ľ23+3=13
13ĘčEEEâ3ń
4lĚ
1+24-2+34-3Ľ24+3+44 - 4Ľ34 +6Ľ24
-4=75
75ĘčEEEâ4ń
@ŽđnžŻĚŽÉˇéąĆŕAŘžŕōȢ(wIA[@ŽƊĆvÁ˝ĚĹˇŞĽĽĽ)ĚĹĘĚ_ŠçßȨľÄÝܡB
@E1{ÚĚŐ§Şt1ÔÚ(0<
t1<n-2)A 2{ÚĚŐ§Şt2ÔÚ(t1< t2<n-1)A 3{ÚĚŐ§Şt3ÔÚ(t2<t3<n)ÉüéĆŤ
@@@1ĘÍt1l˘ÄnC t1Ęč čܡ
@@@@@@t 1+1ĘÍt 2- t 1l˘Än-t1C t2- t1Ęč čܡ
@@@@@@t 2+1ĘÍt 3- t 2l˘Än-
t2C t 3- t2Ęč čܡ
ąęçĚgÝíšÍ
@@@@@nC t1En- t1C t2- t1En- t2C t3- t2
@@@=n!/(t1!(t2-t1)!(t3-t2)!(n-t3)!)
ĽĽĽA
ĆČč˝WÉČčܡićt1+(t2-t1)+(t3-t2)+(n-t3)=nj
ťąĹ˝WĚÓĄđąĚP[XÉÄÍßÄlŚÄÝܡ
˘ÜAŐ§ÉdŘçęéO[vĚđg(O[vÍŐ§ćč1½˘)ĆľAeO[vĚlđĘ̢űŠçk1,k2ĽĽĽ,kgik1+k2+ĽĽĽ+kg =njƾܡ
g=t+1
t1= k1
t2-t1=
k2
t3-t2=
k3
@E
@E
@E
n-tg-1=
kg
ăLđăüľŽđęĘťˇéĆŽAÍ
@@@@@nC k1En- k1C k2En- (k1+ k2)C k3En- (k1+ k2+ k3)C k4EĽĽĽEn- (k1+ k2+ k3+ĽĽĽĽ+ kg-1)C kg
@@@=n!/( k1!
k2! k3! k 4!ĽĽĽĽkg!)
ăL˝WÍ
(x1+x2+ĽĽĽ+xg)nĽĽĽB
đWJľ˝ĆŤĚWĹAŠÂOc[vŞgĚĚgÝíšĚĆČčܡB
WđâčɾĢéĚĹx1=x2=ĽĽĽ=xg=1ƾܡ
Ü˝AkiĚĹŹlÍ1ĹkiĚĹĺlÍn-g+1
ęĘÉ˝WĚaÍik1+k2+ĽĽĽ+kg =nG kiŞńŽđ˝šÎjgnĆČčܡix1=x2=ĽĽĽ=xg=1Ću˘˝ĆŤĚBđWJľ˝ĆŤĚśEÓĚärjŞăLĹĺŏ̧ńđlśľČŻęÎČčÜšńB
kiŞ0ĚĚęĚÍ
gC0+ gC1+ gC2+ĽĽĽ
ąąÜĹlŚÄÔŘęĆČÁľܢܾ˝
ŽľÄ˘ŻÎ@ĆŻśŽŞąŻéć¤ČCŞˇéĚšŞEEEB
FłńAâčâżâÉŚÄžł˘BęĹŕ\˘ÜšńŠçAđĆyl[đYŚÄA[ĹÁÄžł˘BŇÁĢܡB