•˝Ź‚R‚O”N‚RŒŽ‚P‚W“ú

[—Ź‚ꐯ]

@@@@‘ć357‰ń”Šw“I‚ȉž•ĺ‰đ“š

@@@@ƒ‰đ“š•ĺWŠúŠÔF2ŒŽ18“ú`3ŒŽ18“ú„

m—ݏć˜a‚Ě‘ŠŒÝŠÖŒWn

@https://chart.googleapis.com/chart?cht=tx&chl=\%5bS_m=\sum_%7bk=1%7d%5en%20k%5em=1%5em%2B%202%5em%2B\cdots%2B%20n%5em\%5d@‚Ć‚¨‚ŤA—ݏć˜a‚Ě‘ŠŒÝŠÖŒW‚𒲂ׂĂ݂܂ľ‚˝BŠF‚ł‚ń‚͉ş‹L‚Ě‚ą‚Ć‚Í‚ć‚­‚˛‘ś‚ś‚Ĺ‚ˇB

https://chart.googleapis.com/chart?cht=tx&chl=S_2=S_1\frac%7b2n%2B%201%7d%7b3%7d@@https://chart.googleapis.com/chart?cht=tx&chl=S_3=S_1%5e2@@

‚ť‚ę‚Ĺ‚Í

–â‘č‚PF‚r‚S‚r‚Q~i‚r‚P‚Ě1ŽŸ‚Ě‘˝€ŽŽj‚Ĺ•\‚ľ‚Ä‚­‚ž‚ł‚˘B

–â‘č‚QF‚r‚T‚đ‚r‚P‚Ě‚RŽŸ‚Ě‘˝€ŽŽ‚Ĺ•\‚ľ‚Ä‚­‚ž‚ł‚˘B

 

‚ą‚ą‚Š‚ç‚Í—]—Í‚Ě‚ ‚él‚Ö

–â‘č‚RF‚r‚U‚r‚Q~i‚r‚P‚Ě‚QŽŸ‚Ě‘˝€ŽŽj‚Ĺ•\‚ľ‚Ä‚­‚ž‚ł‚˘B

–â‘č‚SF‚r‚V‚đ‚r‚P‚Ě‚SŽŸ‚Ě‘˝€ŽŽ‚Ĺ•\‚ľ‚Ä‚­‚ž‚ł‚˘B

 

‚ł‚ç‚ɁAŽŸ‚̒ljÁ–â‘č‚đ‚¨Šč‚˘‚ľ‚Ü‚ˇB

–â‘č‚TF‚‚Ş3ˆČă‚̊‚Ě‚Ć‚ŤA‚r‚‚Í‚r‚R‚ĹŠ„‚čŘ‚ę‚éB

–â‘č‚UF‚‚Ş‹ô”‚Ě‚Ć‚ŤA‚r‚‚Í‚r‚Q‚ĹŠ„‚čŘ‚ę‚éB

i‚¨Šč‚˘F‚ą‚Ě2‘č‚Í“–Žž‚ĚŽw“ąŽĺŽ–‚Š‚猞‚í‚ę‚˝‚Ě‚Ĺ‚ˇ‚ށA–˘‚ž‚ÉŘ–ž‚Ĺ‚Ť‚Ä‚˘‚Ü‚š‚ńB’N‚Š‹ł‚Ś‚Ä‚­‚ž‚ł‚˘j

 

NO1u•l“c–ž–¤v     @@02/21 10Žž50•Ş@ŽóM  XV 3/18

‚r‚O‚Ž
@@‚r
‚P‚P^‚QE‚Ž(‚Ž{‚P)
@@‚r
‚Q‚P^‚UE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)
@@‚r
‚R‚P^‚SE‚Ž‚Q(‚Ž{‚P)‚Q
–â‘č‚P
@P“™ŽŽ(‚‹{‚P)
‚T|‚‹‚T‚T‚‹‚S{‚P‚O‚‹‚R{‚P‚O‚‹‚Q{‚T‚‹{‚P‚É‚¨‚˘‚āC
@@‚‹‚PC‚QC‚RCEEEC‚Ž
‚đ‘ă“ü‚ľ‚āC•ÓX‚đ‰Á‚Ś‚é‚ƁC
@@(‚Ž{‚P)
‚T|‚P‚T‚T‚r‚S{‚P‚O‚r‚R{‚P‚O‚r‚Q{‚T‚r‚P{‚r‚O
@@ˆ‚r‚S‚P^‚TE{(‚Ž‚T{‚T‚Ž‚S{‚P‚O‚Ž‚R{‚P‚O‚Ž‚Q{‚T‚Ž)|‚P‚OE‚P^‚SE‚Ž‚Q(‚Ž{‚P)‚Q|‚P‚OE‚P^‚UE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)|‚TE‚P^‚QE‚Ž(‚Ž{‚P)|‚Ž}
@@@@@‚P^‚TE‚Ž{(‚Ž
‚S{‚T‚Ž‚R{‚P‚O‚Ž‚Q{‚P‚O‚Ž{‚S)|‚T^‚QE‚Ž(‚Ž{‚P)‚Q|‚T^‚RE(‚Ž{‚P)(‚Q‚Ž{‚P)|‚T^‚QE(‚Ž{‚P)}
@@@@@‚P^‚R‚OE‚Ž{‚U(‚Ž
‚S{‚T‚Ž‚R{‚P‚O‚Ž‚Q{‚P‚O‚Ž{‚S)|‚P‚T‚Ž(‚Ž{‚P)‚Q|‚P‚O(‚Ž{‚P)(‚Q‚Ž{‚P)|‚P‚T(‚Ž{‚P)}
@@@@@‚P^‚R‚OE‚Ž(‚Ž{‚P){‚U(‚Ž
‚R{‚S‚Ž‚Q{‚U‚Ž{‚S)|‚P‚T‚Ž(‚Ž{‚P)|‚P‚O(‚Q‚Ž{‚P)|‚P‚T}
@@@@@‚P^‚R‚OE‚Ž(‚Ž{‚P)(‚U‚Ž
‚R{‚X‚Ž‚Q{‚Ž|‚P)
@@@@@‚P^‚R‚OE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž
‚Q{‚R‚Ž|‚P)
@@ˆ‚r
‚S‚P^‚UE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)E‚P^‚TE(‚R‚Ž‚Q{‚R‚Ž|‚P)
@@@@@‚r
‚QE‚P^‚TE{‚R(‚Ž‚Q{‚Ž)|‚P}
@‚ą‚ą‚ŁC‚Ž
‚Q{‚Ž‚Q‚r‚P
@@ˆ‚r‚S‚r‚QE‚P^‚TE(‚U‚r‚P|‚P)EEEi“šj

–â‘č‚Q
@P“™ŽŽ(‚‹{‚P)
‚U|‚‹‚U‚U‚‹‚T{‚P‚T‚‹‚S{‚Q‚O‚‹‚R{‚P‚T‚‹‚Q{‚U‚‹{‚P‚É‚¨‚˘‚āC
@@‚‹‚PC‚QC‚RCEEEC‚Ž
‚đ‘ă“ü‚ľ‚āC•ÓX‚đ‰Á‚Ś‚é‚ƁC
@@(‚Ž{‚P)
‚U|‚P‚U‚U‚r‚T{‚P‚T‚r‚S{‚Q‚O‚r‚R{‚P‚T‚r‚Q{‚U‚r‚P{‚r‚O
@@ˆ‚r‚T‚P^‚UE{(‚Ž‚U{‚U‚Ž‚T{‚P‚T‚Ž‚S{‚Q‚O‚Ž‚R{‚P‚T‚Ž‚Q{‚U‚Ž)|‚P‚TE‚P^‚R‚OE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)|‚Q‚OE‚P^‚SE‚Ž‚Q(‚Ž{‚P)‚Q|‚P‚TE‚P^‚UE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)|‚UE‚P^‚QE‚Ž(‚Ž{‚P)|‚Ž}
@@@@@‚P^‚UE‚Ž{(‚Ž
‚T{‚U‚Ž‚S{‚P‚T‚Ž‚R{‚Q‚O‚Ž‚Q{‚P‚T‚Ž{‚T)|‚P^‚QE(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)|‚T‚Ž(‚Ž{‚P)‚Q|‚T^‚QE(‚Ž{‚P)(‚Q‚Ž{‚P)|‚R(‚Ž{‚P)}
@@@@@‚P^‚P‚QE‚Ž{‚Q(‚Ž
‚T{‚U‚Ž‚S{‚P‚T‚Ž‚R{‚Q‚O‚Ž‚Q{‚P‚T‚Ž{‚T)|(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)|‚P‚O‚Ž(‚Ž{‚P)‚Q|‚T(‚Ž{‚P)(‚Q‚Ž{‚P)|‚U(‚Ž{‚P)}
@@@@@‚P^‚P‚QE‚Ž(‚Ž{‚P){‚Q(‚Ž
‚S{‚T‚Ž‚R{‚P‚O‚Ž‚Q{‚P‚O‚Ž{‚T)|(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)|‚P‚O‚Ž(‚Ž{‚P)|‚T(‚Q‚Ž{‚P)|‚U}
@@@@@‚P^‚P‚QE‚Ž(‚Ž{‚P){(‚Q‚Ž
‚S{‚P‚O‚Ž‚R{‚Q‚O‚Ž‚Q{‚Q‚O‚Ž{‚S)|(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž{‚S)|‚P‚O‚Ž(‚Ž{‚P)}
@@@@@‚P^‚P‚QE‚Ž(‚Ž{‚P){(‚Q‚Ž
‚S{‚S‚Ž‚R{‚P‚P‚Ž‚Q{‚X‚Ž)|‚P‚O‚Ž(‚Ž{‚P)}
@@@@@‚P^‚P‚QE‚Ž
‚Q(‚Ž{‚P)‚Q{(‚Q‚Ž‚Q{‚Q‚Ž{‚X)|‚P‚O}
@@@@@‚P^‚P‚QE‚Ž
‚Q(‚Ž{‚P)‚Q(‚Q‚Ž‚Q{‚Q‚Ž|‚P)
@@ˆ‚r
‚T{‚P^‚QE‚Ž(‚Ž{‚P)}‚QE‚P^‚RE{‚Q(‚Ž‚Q{‚Ž)|‚P}
@@@@@‚r
‚P‚QE‚P^‚RE(‚S‚r‚P|‚P)
@@@@@‚P^‚RE‚r
‚P‚Q(‚S‚r‚P|‚P)EEEi“šj

–â‘č‚R
@P“™ŽŽ(‚‹{‚P)
‚V|‚‹‚V‚V‚‹‚U{‚Q‚P‚‹‚T{‚R‚T‚‹‚S{‚R‚T‚‹‚R{‚Q‚P‚‹‚Q{‚V‚‹{‚P‚É‚¨‚˘‚āC
@@‚‹‚PC‚QC‚RCEEEC‚Ž
‚đ‘ă“ü‚ľ‚āC•ÓX‚đ‰Á‚Ś‚é‚ƁC
@@(‚Ž{‚P)
‚V|‚P‚V‚V‚r‚U{‚Q‚P‚r‚T{‚R‚T‚r‚S{‚R‚T‚r‚R{‚Q‚P‚r‚Q{‚V‚r‚P{‚r‚O
@@ˆ‚r‚U‚P^‚VE{(‚Ž‚V{‚V‚Ž‚U{‚Q‚P‚Ž‚T{‚R‚T‚Ž‚S{‚R‚T‚Ž‚R{‚Q‚P‚Ž‚Q{‚V‚Ž)|‚Q‚PE‚P^‚P‚QE‚Ž‚Q(‚Ž{‚P)‚Q(‚Q‚Ž‚Q{‚Q‚Ž|‚P)|‚R‚TE‚P^‚R‚OE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)|‚R‚TE‚P^‚SE‚Ž‚Q(‚Ž{‚P)‚Q|‚Q‚PE‚P^‚UE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)|‚VE‚P^‚QE‚Ž(‚Ž{‚P)|‚Ž}
@@@@@‚P^‚VE‚Ž{(‚Ž
‚U{‚V‚Ž‚T{‚Q‚P‚Ž‚S{‚R‚T‚Ž‚R{‚R‚T‚Ž‚Q{‚Q‚P‚Ž{‚U)|‚V^‚SE‚Ž(‚Ž{‚P)‚Q(‚Q‚Ž‚Q{‚Q‚Ž|‚P)|‚V^‚UE(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)|‚R‚T^‚SE‚Ž(‚Ž{‚P)‚Q|‚V^‚QE(‚Ž{‚P)(‚Q‚Ž{‚P)|‚V^‚QE(‚Ž{‚P)}
@@@@@‚P^‚W‚SE‚Ž{‚P‚Q(‚Ž
‚U{‚V‚Ž‚T{‚Q‚P‚Ž‚S{‚R‚T‚Ž‚R{‚R‚T‚Ž‚Q{‚Q‚P‚Ž{‚U)|‚Q‚P‚Ž(‚Ž{‚P)‚Q(‚Q‚Ž‚Q{‚Q‚Ž|‚P)|‚P‚S(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)|‚P‚O‚T‚Ž(‚Ž{‚P)‚Q|‚S‚Q(‚Ž{‚P)(‚Q‚Ž{‚P)|‚S‚Q(‚Ž{‚P)}
@@@@@‚P^‚W‚SE‚Ž(‚Ž{‚P){‚P‚Q(‚Ž
‚T{‚U‚Ž‚S{‚P‚T‚Ž‚R{‚Q‚O‚Ž‚Q{‚P‚T‚Ž{‚U)|‚Q‚P‚Ž(‚Ž{‚P)(‚Q‚Ž‚Q{‚Q‚Ž|‚P)|‚P‚S(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)|‚P‚O‚T‚Ž(‚Ž{‚P)|‚S‚Q(‚Q‚Ž{‚P)|‚S‚Q}
@@@@@‚P^‚W‚SE‚Ž(‚Ž{‚P){‚P‚Q(‚Ž
‚T{‚U‚Ž‚S{‚P‚T‚Ž‚R{‚Q‚O‚Ž‚Q{‚P‚T‚Ž{‚U)|‚Q‚P‚Ž(‚Ž{‚P)(‚Q‚Ž‚Q{‚Q‚Ž|‚P)|‚P‚S(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)|‚P‚O‚T‚Ž(‚Ž{‚P)|‚S‚Q(‚Q‚Ž{‚P)|‚S‚Q}
@@@@@‚P^‚W‚SE‚Ž(‚Ž{‚P){‚U(‚Q‚Ž
‚T{‚P‚Q‚Ž‚S{‚R‚O‚Ž‚R{‚S‚O‚Ž‚Q{‚R‚O‚Ž{‚T)|‚Q‚P‚Ž(‚Ž{‚P)(‚Q‚Ž‚Q{‚Q‚Ž{‚S)|‚P‚S(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž{‚Q)}
@@@@@‚P^‚S‚QE‚Ž(‚Ž{‚P){‚R(‚Q‚Ž
‚T{‚P‚Q‚Ž‚S{‚R‚O‚Ž‚R{‚S‚O‚Ž‚Q{‚R‚O‚Ž{‚T)|‚Q‚P‚Ž(‚Ž{‚P)(‚Ž‚Q{‚Ž{‚Q)|‚V(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž{‚Q)}
@@@@@‚P^‚S‚QE‚Ž(‚Ž{‚P){‚R(‚Q‚Ž
‚T{‚T‚Ž‚S{‚P‚U‚Ž‚R{‚P‚X‚Ž‚Q{‚P‚U‚Ž{‚T)|‚V(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž{‚Q)}
@@@@@‚P^‚S‚QE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P){‚R(‚Ž
‚S{‚Q‚Ž‚R{‚V‚Ž‚Q{‚U‚Ž{‚T)|‚V(‚R‚Ž‚Q{‚R‚Ž{‚Q)}
@@@@@‚P^‚S‚QE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž
‚S{‚U‚Ž‚R|‚R‚Ž{‚P)
@@ˆ‚r
‚U‚P^‚UE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)E‚P^‚VE(‚R‚Ž‚S{‚U‚Ž‚R|‚R‚Ž{‚P)
@@@@@‚r
‚QE‚P^‚VE(‚R‚Ž‚S{‚U‚Ž‚R|‚R‚Ž{‚P)
@‚ą‚ą‚ŁC
@@‚R(‚Ž
‚Q{‚Ž)‚Q‚R‚Ž‚S{‚U‚Ž‚R{‚R‚Ž‚Q
@@@@@@@@@‚R‚Ž‚S{‚U‚Ž‚R|‚R‚Ž{‚P{‚R‚Ž‚Q{‚R‚Ž|‚P
@@ˆ‚R‚Ž
‚S{‚U‚Ž‚R|‚R‚Ž{‚P‚R(‚Ž‚Q{‚Ž)‚Q|‚R(‚Ž‚Q{‚Ž){‚P
@@@@@@@@@@@@@@@‚P‚Q‚r
‚P‚Q|‚U‚r‚P{‚P
@@ˆ‚r
‚U‚r‚QE‚P^‚VE(‚P‚Q‚r‚P‚Q|‚U‚r‚P{‚P)EEEi“šj

–â‘č‚S
@P“™ŽŽ(‚‹{‚P)
‚W|‚‹‚W‚W‚‹‚V{‚Q‚W‚‹‚U{‚T‚U‚‹‚T{‚V‚O‚‹‚S{‚T‚U‚‹‚R{‚Q‚W‚‹‚Q{‚W‚‹{‚P‚É‚¨‚˘‚āC
@@‚‹‚PC‚QC‚RCEEEC‚Ž
‚đ‘ă“ü‚ľ‚āC•ÓX‚đ‰Á‚Ś‚é‚ƁC
@@(‚Ž{‚P)
‚W|‚P‚W‚W‚r‚V{‚Q‚W‚r‚U{‚T‚U‚r‚T{‚V‚O‚r‚S{‚T‚U‚r‚R{‚Q‚W‚r‚Q{‚W‚r‚P{‚r‚O
@@ˆ‚r‚V‚P^‚WE{(‚Ž‚W{‚W‚Ž‚V{‚Q‚W‚Ž‚U{‚T‚U‚Ž‚T{‚V‚O‚Ž‚S{‚T‚U‚Ž‚R{‚Q‚W‚Ž‚Q{‚W‚Ž)|‚Q‚WE‚P^‚S‚QE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž‚S{‚U‚Ž‚R|‚R‚Ž{‚P)|‚T‚UE‚P^‚P‚QE‚Ž‚Q(‚Ž{‚P)‚Q(‚Q‚Ž‚Q{‚Q‚Ž|‚P)|‚V‚OE‚P^‚R‚OE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)|‚T‚UE‚P^‚SE‚Ž‚Q(‚Ž{‚P)‚Q|‚Q‚WE‚P^‚UE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)|‚WE‚P^‚QE‚Ž(‚Ž{‚P)|‚Ž}
@@@@@‚P^‚WE‚Ž{(‚Ž
‚V{‚W‚Ž‚U{‚Q‚W‚Ž‚T{‚T‚U‚Ž‚S{‚V‚O‚Ž‚R{‚T‚U‚Ž‚Q{‚Q‚W‚Ž{‚V)|‚Q^‚RE(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž‚S{‚U‚Ž‚R|‚R‚Ž{‚P)|‚P‚S^‚RE‚Ž(‚Ž{‚P)‚Q(‚Q‚Ž‚Q{‚Q‚Ž|‚P)|‚V^‚RE(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)|‚P‚S‚Ž(‚Ž{‚P)‚Q|‚P‚S^‚RE(‚Ž{‚P)(‚Q‚Ž{‚P)|‚S(‚Ž{‚P)}
@@@@@‚P^‚Q‚SE‚Ž(‚Ž{‚P){‚R(‚Ž
‚U{‚V‚Ž‚T{‚Q‚P‚Ž‚S{‚R‚T‚Ž‚R{‚R‚T‚Ž‚Q{‚Q‚P‚Ž{‚V)|‚Q(‚Q‚Ž{‚P)(‚R‚Ž‚S{‚U‚Ž‚R|‚R‚Ž{‚P)|‚P‚S‚Ž(‚Ž{‚P)(‚Q‚Ž‚Q{‚Q‚Ž|‚P)|‚V(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)|‚S‚Q‚Ž(‚Ž{‚P)|‚P‚S(‚Q‚Ž{‚P)|‚P‚Q)}
@@@@@‚P^‚Q‚SE‚Ž(‚Ž{‚P){‚R(‚Ž
‚U{‚V‚Ž‚T{‚Q‚P‚Ž‚S{‚R‚T‚Ž‚R{‚R‚T‚Ž‚Q{‚Q‚P‚Ž{‚R)|‚Q(‚Q‚Ž{‚P)(‚R‚Ž‚S{‚U‚Ž‚R|‚R‚Ž{‚P)|‚P‚S‚Ž(‚Ž{‚P)(‚Q‚Ž‚Q{‚Q‚Ž{‚Q)|‚V(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž{‚P)}
@@@@@‚P^‚Q‚SE‚Ž(‚Ž{‚P){‚R(‚Ž
‚U{‚V‚Ž‚T{‚Q‚P‚Ž‚S{‚R‚T‚Ž‚R{‚R‚T‚Ž‚Q{‚Q‚P‚Ž{‚R)|‚R(‚Q‚Ž{‚P)(‚Q‚Ž‚S{‚S‚Ž‚R{‚V‚Ž‚Q{‚T‚Ž{‚R)|‚P‚S‚Ž(‚Ž{‚P)(‚Q‚Ž‚Q{‚Q‚Ž{‚Q)}
@@@@@‚P^‚Q‚SE‚Ž(‚Ž{‚P){‚R(‚Ž
‚U{‚R‚Ž‚T{‚P‚P‚Ž‚S{‚P‚V‚Ž‚R{‚P‚W‚Ž‚Q{‚P‚O‚Ž)|‚Q‚Ž(‚Ž{‚P)(‚P‚S‚Ž‚Q{‚P‚S‚Ž{‚P‚V)}
@@@@@‚P^‚Q‚SE‚Ž
‚Q(‚Ž{‚P)‚Q{‚R(‚Ž‚S{‚Q‚Ž‚R{‚X‚Ž‚Q{‚W‚Ž{‚P‚O)|‚P‚S(‚Q‚Ž‚Q{‚Q‚Ž{‚Q)}
@@@@@‚P^‚Q‚SE‚Ž
‚Q(‚Ž{‚P)‚Q(‚R‚Ž‚S{‚U‚Ž‚R|‚Ž‚Q|‚S‚Ž{‚Q)
@@ˆ‚r
‚V{‚P^‚QE‚Ž(‚Ž{‚P)}‚QE‚P^‚UE(‚R‚Ž‚S{‚U‚Ž‚R|‚Ž‚Q|‚S‚Ž{‚Q)
@@@@@‚r
‚P‚QE‚P^‚UE(‚R‚Ž‚S{‚U‚Ž‚R|‚Ž‚Q|‚S‚Ž{‚Q)
@‚ą‚ą‚ŁC
@@‚R(‚Ž
‚Q{‚Ž)‚Q‚R‚Ž‚S{‚U‚Ž‚R{‚R‚Ž‚Q
@@@@@@@@@‚R‚Ž‚S{‚U‚Ž‚R|‚Ž‚Q|‚S‚Ž{‚Q{‚S‚Ž‚Q{‚S‚Ž|‚Q
@@ˆ‚R‚Ž
‚S{‚U‚Ž‚R|‚Ž‚Q|‚S‚Ž{‚Q‚R(‚Ž‚Q{‚Ž)‚Q|‚S(‚Ž‚Q{‚Ž){‚Q
@@@@@@@@@@@@@@@@@@‚P‚Q‚r
‚P‚Q|‚W‚r‚P{‚Q
@@@@@@@@@@@@@@@@@@‚Q(‚U‚r
‚P‚Q|‚S‚r‚P{‚P)
@@ˆ‚r
‚V‚P^‚RE‚r‚P‚Q(‚U‚r‚P‚Q|‚S‚r‚P{‚P)EEEi“šj

@–â‘č‚TˆČ~‚́C‚Ü‚ž•Ş‚Š‚č‚Ü‚š‚ńD‚ť‚̐̐”ŠwƒZƒ~ƒi[‚Ě“ŠeŒ¤‹†‚É‚¨‚˘‚āC‚r
‚‚Ěˆę”ʉť‚ľ‚˝ŽŽ‚đŒŠ‚˝‚ą‚Ć‚Ş‚ ‚č‚Ü‚ˇ‚ށC—‰đ‚Ĺ‚Ť‚Ü‚š‚ń‚Ĺ‚ľ‚˝D‚ŕ‚Á‚Ɛ^–ʖڂɕ׋­‚ľ‚Ä‚¨‚Ż‚΂悊‚Á‚˝‚Ć”˝Č‚ľ‚Ä‚˘‚é“úX‚Ĺ‚ˇD

 

–â‘č‚Pi•Ę‰đj
@@‚r‚O‚ŽC‚r‚P‚P^‚QE‚Ž(‚Ž{‚P)C‚r‚Q‚P^‚UE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)C‚r‚R‚P^‚SE‚Ž‚Q(‚Ž{‚P)‚Q
‚Ĺ‚ ‚é‚Š‚çC
@@‚r
‚S‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)(‚‚Ž‚Q{‚‚‚Ž{‚ƒ)i‚C‚‚C‚ƒ‚͒萔j
‚Ɨސ„‚Ĺ‚Ť‚éD
@‚Ž‚P‚Ě‚Ć‚ŤC‚r
‚S‚P‚S‚PE(‚P{‚P)E(‚QE‚P{‚P)E(‚P‚QE‚{‚PE‚‚{‚ƒ)
@@ˆ‚{‚‚{‚ƒ‚P^‚UEEE(1)
@‚Ž‚Q‚Ě‚Ć‚ŤC‚r
‚S‚P‚S{‚Q‚S‚QE(‚Q{‚P)E(‚QE‚Q{‚P)E(‚Q‚QE‚{‚QE‚‚{‚ƒ)
@@ˆ‚S‚{‚Q‚‚{‚ƒ‚P‚V^‚R‚OEEE(2)
@‚Ž‚R‚Ě‚Ć‚ŤC‚r
‚S‚P‚S{‚Q‚S{‚R‚S‚RE(‚R{‚P)E(‚QE‚R{‚P)E(‚R‚QE‚{‚RE‚‚{‚ƒ)
@@ˆ‚X‚{‚R‚‚{‚ƒ‚V^‚UEEE(3)
@(2)|(1)‚Š‚çC‚R‚{‚‚‚Q^‚TEEE(4)
@(3)|(2)‚Š‚çC‚T‚{‚‚‚R^‚TEEE(5)
@(5)|(4)‚Š‚çC‚Q‚‚P^‚T
@@ˆ‚‚P^‚P‚O
@(4)‚Š‚çC‚‚‚Q^‚T|‚R‚‚Q^‚T|‚R^‚P‚O‚P^‚P‚O
@(1)‚Š‚çC‚ƒ‚P^‚U|‚|‚‚‚P^‚U|‚P^‚P‚O|‚P^‚P‚O|‚P^‚R‚O
@@ˆ‚r
‚S‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)(‚P^‚P‚OE‚Ž‚Q{‚P^‚P‚OE‚Ž|‚P^‚R‚O)
@@@@@‚P^‚R‚OE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž
‚Q{‚R‚Ž|‚P)
@‚ą‚ę‚𐔊w“I‹A”[–@‚ĹŘ–ž‚ˇ‚éD
i).
‚Ž‚P‚Ě‚Ć‚Ť‚́C–ž‚ç‚Š‚ɐŹ—§‚ˇ‚éD
ii).
‚Ž‚‹i‚‹†‚Pj‚Ě‚Ć‚ŤCŹ—§‚ˇ‚é‚Ɖź’股‚é‚ƁC
@@‚r
‚S‚P^‚R‚OE‚‹(‚‹{‚P)(‚Q‚‹{‚P)(‚R‚‹‚Q{‚R‚‹|‚P)
@‚Ž‚‹{‚P‚Ě‚Ć‚ŤC
@@‚r
‚S‚P^‚R‚OE‚‹(‚‹{‚P)(‚Q‚‹{‚P)(‚R‚‹‚Q{‚R‚‹|‚P){(‚‹{‚P)‚S
@@@@‚P^‚R‚OE(‚‹{‚P){‚‹(‚Q‚‹{‚P)(‚R‚‹‚Q{‚R‚‹|‚P){‚R‚O(‚‹{‚P)‚R}
@@@@‚P^‚R‚OE(‚‹{‚P)(‚U‚‹‚S{‚R‚X‚‹‚R{‚X‚P‚‹‚Q{‚W‚X‚‹{‚R‚O)
@@@@‚P^‚R‚OE(‚‹{‚P)(‚‹{‚Q)(‚U‚‹
‚R{‚Q‚V‚‹‚Q{‚R‚V‚‹{‚P‚T)
@@@@‚P^‚R‚OE(‚‹{‚P)(‚‹{‚Q)(‚Q‚‹{‚R)(‚R‚‹
‚Q{‚X‚‹{‚T)
@@@@‚P^‚R‚OE(‚‹{‚P){(‚‹{‚P){‚P}{‚Q(‚‹{‚P){‚P}{‚R(‚‹{‚P)
‚Q{‚R(‚‹{‚P)|‚P}
@ŒĚ‚É‚Ž‚‹{‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@i).ii).‚ć‚čC‚ˇ‚ׂĂ̐łŽ”‚Ž‚ɂ‚˘‚āC
@@‚r
‚S‚P^‚R‚OE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)
‚ސŹ—§‚ˇ‚éD
iˆČ‰ş“Ż—lj

–â‘č‚Qi•Ę‰đj
@@‚r
‚T‚Ž‚Q(‚Ž{‚P)‚Q(‚‚Ž‚Q{‚‚‚Ž{‚ƒ)i‚C‚‚C‚ƒ‚͒萔j
‚Ɨސ„‚Ĺ‚Ť‚éD
@‚Ž‚P‚Ě‚Ć‚ŤC‚r
‚T‚P‚T‚P‚QE(‚P{‚P)‚QE(‚P‚QE‚{‚PE‚‚{‚ƒ)
@@ˆ‚{‚‚{‚ƒ‚P^‚SEEE(1)
@‚Ž‚Q‚Ě‚Ć‚ŤC‚r
‚T‚P‚T{‚Q‚T‚Q‚QE(‚Q{‚P)‚QE(‚Q‚QE‚{‚QE‚‚{‚ƒ)
@@ˆ‚S‚{‚Q‚‚{‚ƒ‚P‚P^‚P‚QEEE(2)
@‚Ž‚R‚Ě‚Ć‚ŤC‚r
‚T‚P‚T{‚Q‚T{‚R‚T‚R‚QE(‚R{‚P)‚QE(‚R‚QE‚{‚RE‚‚{‚ƒ)
@@ˆ‚X‚{‚R‚‚{‚ƒ‚Q‚R^‚P‚QEEE(3)
@(2)|(1)‚Š‚çC‚R‚{‚‚‚Q^‚REEE(4)
@(3)|(2)‚Š‚çC‚T‚{‚‚‚PEEE(5)
@(5)|(4)‚Š‚çC‚Q‚‚P^‚R
@@ˆ‚‚P^‚U
@(4)‚Š‚çC‚‚‚Q^‚R|‚R‚‚Q^‚R|‚P^‚Q‚P^‚U
@(1)‚Š‚çC‚ƒ‚P^‚S|‚|‚‚‚P^‚S|‚P^‚U|‚P^‚U|‚P^‚P‚Q
@@ˆ‚r
‚T‚Ž‚Q(‚Ž{‚P)‚Q(‚P^‚UE‚Ž‚Q{‚P^‚UE‚Ž|‚P^‚P‚Q)
@@@@@‚P^‚P‚QE‚Ž
‚Q(‚Ž{‚P)‚Q(‚Q‚Ž‚Q{‚Q‚Ž|‚P)
@‚ą‚ę‚𐔊w“I‹A”[–@‚ĹŘ–ž‚ˇ‚éD
i).
‚Ž‚P‚Ě‚Ć‚Ť‚́C–ž‚ç‚Š‚ɐŹ—§‚ˇ‚éD
ii).
‚Ž‚‹i‚‹†‚Pj‚Ě‚Ć‚ŤCŹ—§‚ˇ‚é‚Ɖź’股‚é‚ƁC
@@‚r
‚T‚P^‚P‚QE‚‹‚Q(‚‹{‚P)‚Q(‚Q‚‹‚Q{‚Q‚‹|‚P)
@‚Ž‚‹{‚P‚Ě‚Ć‚ŤC
@@‚r
‚T‚P^‚P‚QE‚‹‚Q(‚‹{‚P)‚Q(‚Q‚‹‚Q{‚Q‚‹|‚P){(‚‹{‚P)‚T
@@@@‚P^‚P‚QE(‚‹{‚P)‚Q{‚‹‚Q(‚Q‚‹‚Q{‚Q‚‹|‚P){‚P‚Q(‚‹{‚P)‚R}
@@@@‚P^‚P‚QE(‚‹{‚P)‚Q(‚Q‚‹‚S{‚P‚S‚‹‚R{‚R‚T‚‹‚Q{‚R‚U‚‹{‚P‚Q)
@@@@‚P^‚P‚QE(‚‹{‚P)‚Q(‚‹{‚Q)‚Q(‚Q‚‹‚Q{‚U‚‹{‚R)
@@@@‚P^‚P‚QE(‚‹{‚P)‚Q{(‚‹{‚P){‚P}‚Q{‚Q(‚‹{‚P)‚Q{‚Q(‚‹{‚P)|‚P}
@ŒĚ‚É‚Ž‚‹{‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@i).ii).‚ć‚čC‚ˇ‚ׂĂ̐łŽ”‚Ž‚ɂ‚˘‚āC
@@‚r‚T‚P^‚P‚QE‚Ž‚Q(‚Ž{‚P)‚Q(‚Q‚Ž‚Q{‚Q‚Ž|‚P)
‚ސŹ—§‚ˇ‚éD
iˆČ‰ş“Ż—lj

@–â‘č‚RˆČ~‚Í–ł—‚Ĺ‚ľ‚˝D

–â‘č‚Pi•Ę‰đ‚ť‚Ě‚Qj
@‚C‚‚C‚ƒC‚„‚đ’萔‚Ć‚ˇ‚é‚Ć‚ŤC
@@ç‚‹|‚P…‚˜…‚‹(‚˜‚S{‚‚˜‚R{‚‚‚˜‚Q{‚ƒ‚˜{‚„)‚„‚˜
@@@[‚P^‚TE‚˜‚T{‚^‚SE‚˜‚S{‚‚^‚RE‚˜‚R{‚ƒ^‚QE‚˜‚Q{‚„‚˜]‚‹|‚P…‚˜…‚‹
@@@‚P^‚TE{‚‹‚T|(‚‹|‚P)‚T}{‚^‚SE{‚‹‚S|(‚‹|‚P)‚S}{‚‚^‚RE{‚‹‚R|(‚‹|‚P)‚R}{‚ƒ^‚QE{‚‹‚Q|(‚‹|‚P)‚Q}{‚„{‚‹|(‚‹|‚P)}
@@@‚P^‚TE(‚T‚‹‚S|‚P‚O‚‹‚R{‚P‚O‚‹‚Q|‚T‚‹{‚P){‚^‚SE(‚S‚‹‚R|‚U‚‹‚Q{‚S‚‹|‚P){‚‚^‚RE(‚R‚‹‚Q|‚R‚‹{‚P){‚ƒ^‚QE(‚Q‚‹|‚P){‚„
@@@‚‹‚S{(|‚Q{‚)‚‹‚R{(‚Q|‚R^‚QE‚{‚‚)‚‹‚Q{(|‚P{‚|‚‚{‚ƒ)‚‹{(‚P^‚T|‚^‚S{‚‚^‚R|‚ƒ^‚Q{‚„)
@@@ß‚‹‚S
‚Ć‚ˇ‚é‚ƁC
@@|‚Q{‚‚OC‚Q|‚R^‚Q^‚{‚‚‚OC|‚P{‚|‚‚{‚ƒ‚OC‚P^‚T|‚^‚S{‚‚^‚R|‚ƒ^‚Q{‚„‚O
@@ˆ‚‚QC‚‚‚PC‚ƒ‚OC‚„|‚P^‚R‚O
@@ˆ‚‹‚Sç‚‹|‚P…‚˜…‚‹(‚˜‚S{‚Q‚˜‚R{‚˜‚Q|‚P^‚R‚O)‚„‚˜
@‚‹‚PC‚QC‚RCEEEC‚Ž‚đ‘ă“ü‚ľ‚āC•ÓX‚đ‰Á‚Ś‚é‚ƁC
@@‚r‚Sç‚O…‚˜…‚Ž(‚˜‚S{‚Q‚˜‚R{‚˜‚Q|‚P^‚R‚O)‚„‚˜
@@@@[‚P^‚TE‚˜‚T{‚P^‚QE‚˜‚S{‚P^‚RE‚˜‚R|‚P^‚R‚OE‚˜]‚O…‚˜…‚Ž
@@@@‚P^‚TE‚Ž‚T{‚P^‚QE‚Ž‚S{‚P^‚RE‚Ž‚R|‚P^‚R‚OE‚Ž
@@@@‚P^‚R‚OE‚Ž(‚U‚Ž‚S{‚P‚T‚Ž‚R{‚P‚O‚Ž‚Q|‚P)
@@@@‚P^‚R‚OE‚Ž(‚Ž{‚P)(‚U‚Ž‚R{‚X‚Ž‚Q{‚Ž|‚P)
@@@@‚P^‚R‚OE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)(‚R‚Ž‚Q{‚R‚Ž|‚P)

–â‘č‚Qi•Ę‰đ‚ť‚Ě‚Qj
@‚C‚‚C‚ƒC‚„C‚…‚đ’萔‚Ć‚ˇ‚é‚Ć‚ŤC
@@ç‚‹|‚P…‚˜…‚‹(‚˜‚T{‚‚˜‚S{‚‚‚˜‚R{‚ƒ‚˜‚Q{‚„‚˜{‚…)‚„‚˜
@@@[‚P^‚UE‚˜‚U{‚^‚TE‚˜‚T{‚‚^‚SE‚˜‚S{‚ƒ^‚RE‚˜‚R{‚„^‚QE‚˜‚Q{‚…‚˜]‚‹|‚P…‚˜…‚‹
@@@‚P^‚UE{‚‹‚U|(‚‹|‚P)‚U}{‚^‚TE{‚‹‚T|(‚‹|‚P)‚T}{‚‚^‚SE{‚‹‚S|(‚‹|‚P)‚S}{‚ƒ^‚RE{‚‹‚R|(‚‹|‚P)‚R}{‚„^‚QE{‚‹‚Q|(‚‹|‚P)‚Q}{‚…{‚‹|(‚‹|‚P)}
@@@‚P^‚UE(‚U‚‹‚T|‚P‚T‚‹‚S{‚Q‚O‚‹‚R|‚P‚T‚‹‚Q{‚U‚‹|‚P){‚^‚TE(‚T‚‹‚S|‚P‚O‚‹‚R{‚P‚O‚‹‚Q|‚T‚‹{‚P){‚‚^‚SE(‚S‚‹‚R|‚U‚‹‚Q{‚S‚‹|‚P){‚ƒ^‚RE(‚R‚‹‚Q|‚R‚‹{‚P){‚„^‚QE(‚Q‚‹|‚P){‚…
@@@‚‹‚T{(|‚T^‚Q{‚)‚‹‚S{(‚P‚O^‚R|‚Q‚{‚‚)‚‹‚R{(|‚T^‚Q{‚Q‚|‚R^‚QE‚‚{‚ƒ)‚‹‚Q{(‚P|‚{‚‚|‚ƒ{‚„)‚‹{(|‚P^‚U{‚^‚T|‚‚^‚S{‚ƒ^‚R|‚„^‚Q{‚…)
@@@ß‚‹‚T
‚Ć‚ˇ‚é‚ƁC
@@|‚T^‚Q{‚‚OC‚P‚O^‚R|‚Q‚{‚‚‚OC|‚T^‚Q{‚Q‚|‚R^‚QE‚‚{‚ƒ‚OC‚P|‚{‚‚|‚ƒ{‚„‚OC|‚P^‚U{‚^‚T|‚‚^‚S{‚ƒ^‚R|‚„^‚Q{‚…‚O
@@ˆ‚‚T^‚QC‚‚‚T^‚RC‚ƒ‚OC‚„|‚P^‚UC‚…‚O
@@ˆ‚‹‚Tç‚‹|‚P…‚˜…‚‹(‚˜‚T{‚T^‚QE‚˜‚S{‚T^‚RE‚˜‚R|‚P^‚UE‚˜)‚„‚˜
@‚‹‚PC‚QC‚RCEEEC‚Ž‚đ‘ă“ü‚ľ‚āC•ÓX‚đ‰Á‚Ś‚é‚ƁC
@@‚r‚Tç‚O…‚˜…‚Ž(‚˜‚T{‚T^‚QE‚˜‚S{‚T^‚RE‚˜‚R|‚P^‚UE‚˜)‚„‚˜
@@@@[‚P^‚UE‚˜‚U{‚P^‚QE‚˜‚T{‚T^‚P‚QE‚˜‚S|‚P^‚P‚QE‚˜‚Q]‚O…‚˜…‚Ž
@@@@‚P^‚UE‚Ž‚U{‚P^‚QE‚Ž‚T{‚T^‚P‚QE‚Ž‚S|‚P^‚P‚QE‚Ž‚Q
@@@@‚P^‚P‚QE‚Ž‚Q(‚Q‚Ž‚S{‚U‚Ž‚R{‚T‚Ž‚Q|‚P)
@@@@‚P^‚P‚QE‚Ž‚Q(‚Ž{‚P)‚Q(‚Q‚Ž‚Q{‚Q‚Ž|‚P)


u•l“c–ž–¤v     @@02/24 12Žž38•Ş@ŽóM  XV 3/18 @

 ˆČ‰ş‚ÍŽó‚Ż”„‚č‚Ĺ‚ˇB

–â‘č‚TF‚r‚i‚‚Í‚RˆČă‚̊j‚Í‚r‚Ri‚P^‚SE‚Ž‚Q(‚Ž{‚P)‚Qj‚ĹŠ„‚čŘ‚ę‚éD
@‚r
‚‚r‚(‚Ž)‚Ć‚ľC‚r‚(‚Ž)‚Í‚Ž‚Q(‚Ž{‚P)‚Q‚ĹŠ„‚čŘ‚ę‚é‚ą‚Ć‚đŽŚ‚ˇD
@łŽ”‚Ž‚đˆę”ʉť‚ľCŽŔ”‚Ć‚ˇ‚éD
@‘O‰ń‚̉𓚂ć‚čC
@@‚r
‚(‚Ž)|‚r‚(‚Ž|‚P)‚Ž‚EEE(1)
@‚Ž‚P‚Ć‚ˇ‚é‚ƁC‚P|‚r
‚(‚O)‚P
@@ˆ‚r
‚(‚O)‚OEEE(2)
@(1)‚É‚¨‚˘‚āC‚Ž‚Ɂ|‚Ž‚đ‘ă“ü‚ˇ‚é‚ƁC
@@‚r
‚(|‚Ž)|‚r‚(|‚Ž|‚P)(|‚Ž)‚|‚Ž‚EEE(3)
@‚†(‚Ž)‚r
‚(|‚Ž|‚P)‚Ć‚ˇ‚é‚ƁC
@@‚†(‚Ž)|‚†(‚Ž|‚P)‚r
‚(|‚Ž|‚P)|‚r‚(|‚Ž)‚Ž‚ić(3)j
@ŒĚ‚É(1)‚Š‚çC
@@‚†(‚Ž)‚r
‚(|‚Ž|‚P)‚r‚(‚Ž)EEE(4)
‚Ć‚Č‚éD
@‚Ü‚˝C
@@‚r
‚(|(‚Ž{‚P^‚Q)|‚P^‚Q)‚r‚((‚Ž{‚P^‚Q)|‚P^‚Q)
@ŒĚ‚É‚r
‚(‚Ž)‚́C‚Ž{‚P^‚Q‚ɂ‚˘‚āC‹ôŠÖ”‚Ĺ‚ ‚éD

@‚Ü‚˝C(3)C(4)‚ć‚čC
@@‚r
‚(|‚Ž)|‚P^‚QE(|‚Ž)‚‚r‚(|‚Ž|‚P){‚P^‚QE(|‚Ž)‚
@@@@@@@@@@@@@@@@‚r‚(‚Ž)|‚P^‚QE‚Ž‚
@ŒĚ‚É‚r‚(‚Ž)|‚P^‚QE‚Ž‚‚Í‹ôŠÖ”‚Ĺ‚ ‚éD
@‚Ž†‚R‚Š‚çC‚r
‚(‚Ž)‚Í‚Ž‚Ě‚PŽŸ‚̍€‚Í‚Č‚˘D
@‚r
‚(‚O)‚O‚Š‚çC‚r‚(‚Ž)‚Í‚Ž‚Q‚ĹŠ„‚čŘ‚ę‚éD
@ŒĚ‚É‚™‚r
‚(‚Ž)‚ĚƒOƒ‰ƒt‚́CŒ´“_‚Ĺ‚ŽŽ˛‚ɐڂˇ‚éD
@‚Ü‚˝‚™‚r
‚(‚Ž)‚ĚƒOƒ‰ƒt‚́C’źü‚Ž|‚P^‚Q‚ɂ‚˘‚Ä‘ÎĚ‚Ĺ‚ ‚é‚Š‚çC“_(|‚PC‚O)‚Ĺ‚ŽŽ˛‚ɐڂˇ‚éD
@ŒĚ‚É‚r
‚(‚Ž)‚Í(‚Ž{‚P)‚Q‚ĹŠ„‚čŘ‚ę‚éD
@ˆČă‚Ĺ‘čˆÓ‚ÍŽŚ‚ł‚ę‚˝D

–â‘č‚UF‚r
‚i‚‚Í‚QˆČă‚Ě‹ô”j‚Í‚r‚Qi‚P^‚UE‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)j‚ĹŠ„‚čŘ‚ę‚éD
@–â‘č‚T‚Ć“Ż—l‚ɁC‚r
‚(‚Ž)‚Í‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)‚ĹŠ„‚čŘ‚ę‚é‚ą‚Ć‚đŽŚ‚ˇD
@@‚r
‚(‚Ž)|‚r‚(‚Ž|‚P)‚Ž‚EEE(1)
@‚É‚¨‚˘‚āC‚Ž‚P‚Ć‚ˇ‚é‚ƁC‚r
‚(‚O)‚OEEE(2)
@(1)‚É‚¨‚˘‚āC‚Ž‚Ɂ|‚Ž‚đ‘ă“ü‚ˇ‚é‚ƁC
@@‚r
‚(|‚Ž)|‚r‚(|‚Ž|‚P)(|‚Ž)‚‚Ž‚EEE(3)
@‚†(‚Ž)|‚r
‚(|‚Ž|‚P)‚Ć‚ˇ‚é‚ƁC
@@‚†(‚Ž)|‚†(‚Ž|‚P)|‚r
‚(|‚Ž|‚P){‚r‚(|‚Ž)‚Ž‚ić(3)j
@ŒĚ‚É(1)‚Š‚çC
@@‚†(‚Ž)|‚r
‚(|‚Ž|‚P)‚r‚(‚Ž)EEE(4)
‚Ć‚Č‚éD
@‚Ü‚˝C
@@‚r
‚(|(‚Ž{‚P^‚Q)|‚P^‚Q)|‚r‚((‚Ž{‚P^‚Q)|‚P^‚Q)
@ŒĚ‚É‚r
‚(‚Ž)‚́C‚Ž{‚P^‚Q‚ɂ‚˘‚āCŠďŠÖ”‚Ĺ‚ ‚éD

@‚Ü‚˝C(3)C(4)‚ć‚čC
@@‚r
‚(|‚Ž)|‚P^‚QE(|‚Ž)‚‚r‚(|‚Ž|‚P){‚P^‚QE‚Ž‚
@@@@@@@@@@@@@@|‚r‚(‚Ž){‚P^‚QE‚Ž‚
@@@@@@@@@@@@@@|{‚r‚(‚Ž)|‚P^‚QE‚Ž‚}
@ŒĚ‚É‚r‚(‚Ž)|‚P^‚QE‚Ž‚‚ÍŠďŠÖ”‚Ĺ‚ ‚čC‚r‚(‚Ž)‚ŕŠďŠÖ”‚Ĺ‚ ‚éD
@‚™‚r
‚(‚Ž)‚ĚƒOƒ‰ƒt‚́C“_(|‚P^‚QC‚O)‚ɂ‚˘‚Ä‘ÎĚ‚Ĺ‚ ‚čCŒ´“_‚đ’Ę‚é‚Ě‚Ĺ‚ ‚é‚Š‚çC“_(|‚PC‚O)‚đ’Ę‚éD
@‚ł‚ç‚É“_(|‚P^‚QC‚O)‚ɂ‚˘‚Ä‘ÎĚ‚Ĺ‚ ‚é‚Š‚çC“_(|‚P^‚QC‚O)‚ŕ’Ę‚éD
@ŒĚ‚É‚r
‚(‚Ž)‚Í‚Ž(‚Ž{‚P)(‚Q‚Ž{‚P)‚ĹŠ„‚čŘ‚ę‚éD

NO2u“ń“x’Đ‚Ż”’Řv     02/28 15Žž43•Ş@ŽóM  XV 3/18

(‰đ“š)

łŽ” m,n ‚ɑ΂ľ‚āCS[m]‚đC
S[m]=1^m + 2^m +
c + n^m
‚Ĺ’č‚ß‚éD
“ń€ŒW”‚đ C(k,r) ‚Ć‚ľCrƒ0 ‚Ě‚Ć‚Ť‚Í  C(k,r)=0 ‚Ć‚ˇ‚éD


k
‚đ”CˆÓ‚̐łŽ”‚Ć‚ˇ‚éDŽŸ‚Ě(1),(2)‚ސŹ‚č—§‚D

(1) S[2*k-1]‚́C(S[1])^k,S[3],S[5],c,S[2*k-3] ‚̐üŒ`Œ‹‡‚Ĺ•\‚ˇ‚ą‚Ć‚Ş‚Ĺ‚Ť‚éD

(2) S[2*k]‚́CS[2],S[4],S[6],c,S[2*k-2] ‚̐üŒ`Œ‹‡‚Ĺ•\‚ˇ‚ą‚Ć‚Ş‚Ĺ‚Ť‚éD


(1)
‚ĚŘ–žF
(2*S[1])^k
=(n*(n+1))^k
=
ƒ°[m=1..n]((m*(m+1))^k - ((m-1)*m)^k)
=
ƒ°[m=1..n](m^k)*((m+1)^k - (m-1)^k)
=
ƒ°[m=1..n](m^k)*(ƒ°[r=0..k]C(k,r)*(m^r) - ƒ°[r=0..k]C(k,r)*(m^r)*(-1)^(k+r))
=
ƒ°[m=1..n]ƒ°[r=0..k]C(k,r)*(m^(k+r))*(1-(-1)^(k+r))
=
ƒ°[r=0..k]ƒ°[m=1..n]C(k,r)*(m^(k+r))*(1-(-1)^(k+r))
=
ƒ°[r=0..k]C(k,r)*S[k+r]*(1-(-1)^(k+r))
=
ƒ°[r…k, k+r‚͊]C(k,r)*S[k+r]*2
=
ƒ°[r…k-3, k+r‚͊]C(k,r)*S[k+r]*2 + k*S[2*k-1]*2D

‚ć‚Á‚āC
S[2*k-1]=(1/(2*k))*((2*S[1])^k - 2*
ƒ°[r…k-3, k+r‚͊]C(k,r)*S[k+r])D---(š)
‚ą‚Ě“™ŽŽ‚É‚ć‚Á‚āC(1)‚̐Ź—§‚ŞŘ–ž‚Ĺ‚Ť‚˝D

 

(2)‚ĚŘ–žF
6*S[2]*(2*S[1])^(k-1)
=(2*n+1)*(2*S[1])^k
=(2*n+1)*(n*(n+1))^k
=
ƒ°[m=1..n]((2*m+1)*(m*(m+1))^k - (2*m-1)*((m-1)*m)^k)
=
ƒ°[m=1..n]ƒ°[r=0..k]C(k,r)*(m^(k+r))*((2*m+1) - (2*m-1)*(-1)^(k+r))
=
ƒ°[r=0..k]ƒ°[m=1..n]C(k,r)*(m^(k+r))*((2*m+1) - (2*m-1)*(-1)^(k+r))
=
ƒ°[r=0..k]ƒ°[m=1..n](C(k,r)*2*(m^(k+r+1))*(1 + (-1)^(k+r+1)) + C(k,r)*(m^(k+r))*(1 + (-1)^(k+r)))
=
ƒ°[r=0..k](C(k,r)*2*S[k+r+1]*(1 + (-1)^(k+r+1)) + C(k,r)*S[k+r]*(1 + (-1)^(k+r)))
=
ƒ°[r…k, k+r‚Í‹ô”](C(k,r-1)*2*S[k+r]*2+C(k,r)*S[k+r]*2)
=
ƒ°[r…k, k+r‚Í‹ô”]S[k+r]*(4*C(k,r-1)+2*C(k,r))
=
ƒ°[r…k-2, k+r‚Í‹ô”]S[k+r]*(4*C(k,r-1)+2*C(k,r)) + S[2*k]*(4*k+2)D

‚ć‚Á‚āC
S[2*k]=(1/(4*k+2))*(6*S[2]*(2*S[1])^(k-1) -
ƒ°[r…k-2, k+r‚Í‹ô”]S[k+r]*(4*C(k,r-1)+2*C(k,r)))D---(šš)
‚ą‚Ě“™ŽŽ‚É‚ć‚Á‚āC(2)‚̐Ź—§‚ŞŘ–ž‚Ĺ‚Ť‚˝D

 


(
š)‚É‚¨‚˘‚āCk=1,2,3,4‚đ‡ŽŸ‘ă“ü‚ˇ‚é‚ą‚Ć‚É‚ć‚Á‚āCS[1],S[3],S[5],S[7]‚đC
S[1]
‚Ě‘˝€ŽŽ‚Ĺ•\‚ˇ‚ą‚Ć‚Ş‚Ĺ‚Ť‚éD


S[1]=(1/2)*(2*S[1])=S[1]
D

 

S[3]=(1/4)*((2*S[1])^2)=S[1]^2D

 

S[5]
=(1/6)*((2*S[1])^3 - 2*(C(3,0)*S[3]))
=(1/6)*((2*S[1])^3 - 2*(S[1])^2)
=(4/3)*(S[1])^3 - (1/3)*(S[1])^2
D

 

S[7]
=(1/8)*((2*S[1])^4 - 2*C(4,1)*S[5]))
=(1/8)(16*(S[1])^4 - 2*4*S[5])
=2*(S[1])^4 - S[5]
=2*(S[1])^4 - (4/3)*(S[1])^3 + (1/3)*(S[1])^2
D

 

(šš)‚É‚¨‚˘‚āCk=1,2,3,4‚đ‘ă“ü‚ˇ‚é‚ą‚Ć‚É‚ć‚Á‚āCS[2],S[4],S[6],S[8]‚đC
S[2]*(S[1]
‚Ě‘˝€ŽŽ) ‚ĚŒ`‚Ĺ•\‚ˇ‚ą‚Ć‚Ş‚Ĺ‚Ť‚éD

 

S[2]=(1/6)*(6*S[2])=S[2]D

 

S[4]
=(1/10)*(6*S[2]*(2*S[1])-S[2]*(4*C(2,-1)+2*C(2,0)))
=(1/10)*(12*S[2]*S[1]-S[2]*(4*0+2*1))
=(1/10)*(12*S[2]*S[1]-S[2]*2)
=S[2]*((6/5)*S[1]-1/5)
D

 

S[6]
=(1/14)*(6*S[2]*(2*S[1])^2-S[4]*(4*C(3,0)+2*C(3,1)))
=(1/14)*(24*S[2]*(S[1])^2-10*S[4])
=(1/14)*(24*S[2]*(S[1])^2-(S[2]*(12*S[1]-2)))
=S[2]*((12/7)*(S[1])^2-(6/7)*S[1]+1/7)
D

 

S[8]
=(1/18)*(6*S[2]*(2*S[1])^3-S[4]*(4*C(4,-1)+2*C(4,0))-S[6]*(4*C(4,1)+2*C(4,2)))
=(1/18)*(48*S[2]*(S[1])^3-2*S[4]-28*S[6])
=(1/18)*S[2]*(48*(S[1])^3-2*((6/5)*S[1]-1/5)-28*((12/7)*(S[1])^2-(6/7)*S[1]+1/7))
=S[2]*((8/3)*(S[1])^3-(8/3)*(S[1])^2+(6/5)*S[1]-1/5)
D

 


[
–â‘č1]C[–â‘č2]C[–â‘č3]C[–â‘č4]
ć‚ÉŽŚ‚ľ‚˝‚悤‚ɁC
S[4]=S[2]*((6/5)*S[1]-1/5)
C
S[5]=(4/3)*(S[1])^3 - (1/3)*(S[1])^2
C
S[6]=S[2]*((12/7)*(S[1])^2-(6/7)*S[1]+1/7)
C
S[7]=2*(S[1])^4 - (4/3)*(S[1])^3 + (1/3)*(S[1])^2
D(“š)


[
–â‘č5]
k
†2‚Ě‚Ć‚ŤC(S[1])^k=(S[1]^2)*S[1]^(k-2)=S[3]*S[1]^(k-2) ‚Ĺ‚ ‚é‚Š‚çC
(S[1])^k
‚Í S[3] ‚ĹŠ„‚čŘ‚ę‚éD
S[5]=(4/3)*(S[1])^3 - (1/3)*(S[1])^2
‚Ĺ‚ ‚é‚Š‚çC
S[5]
‚Í (S[1])^2 ‚‚܂čCS[3]‚ĹŠ„‚čŘ‚ę‚éD
k
†3‚Ć‚ˇ‚éD
(S[1])^k,S[3],S[5],
c,S[2*k-3]‚Ě‚ˇ‚ׂĂŞS[3]‚ĹŠ„‚čŘ‚ę‚é‚Ɖź’č‚ľ‚˝‚Ć‚ŤC
(
š)‚É‚ć‚Á‚āCS[2*k-1]‚ŕS[3]‚ĹŠ„‚čŘ‚ę‚é‚ą‚Ć‚Ş”ť‚éD
ˆČă‚ć‚čC3ˆČă‚Ě‘S‚Ă̊ m ‚ɑ΂ľ‚āCS[m]‚ÍS[3]‚ĹŠ„‚čŘ‚ę‚éD


[
–â‘č6]
S[2],S[4],S[6]
‚ŞS[2]‚ĹŠ„‚čŘ‚ę‚é‚ą‚Ƃ́Cć‚ÉŽŚ‚ľ‚˝D
S[2],S[4],S[6],
c,S[2*k-2]‚Ě‚ˇ‚ׂĂŞS[2]‚ĹŠ„‚čŘ‚ę‚é‚Ɖź’č‚ľ‚˝‚Ć‚ŤC
(
šš)‚É‚ć‚Á‚āCS[2*k]‚ŕS[2]‚ĹŠ„‚čŘ‚ę‚é‚ą‚Ć‚Ş”ť‚éD
ˆČă‚ć‚čC2ˆČă‚Ě‘S‚Ä‚Ě‹ô” m ‚ɑ΂ľ‚āCS[m]‚ÍS[2]‚ĹŠ„‚čŘ‚ę‚éD

 

 

[–â‘č5] ‚¨‚ć‚Ń [–â‘č6]‚ÉŠÖ‚ľ‚ẮC
•Ę•ű–@‚É‚ć‚éŘ–ž‚Ş‚ ‚é‚悤‚Ĺ‚ˇD
https://arxiv.org/pdf/math/9207222.pdf

ˆČăD

 

NO3u‘‹N‚Ť‚Ě‚¨‚ś‚ł‚ńv 03/08 17Žž21•Ş@ŽóM  XV 3/18

Ą‰ń‚Ě–â‘č‚́A‚Č‚Š‚Č‚Š“ď‚ľ‚­‚Ä–â‘č5A6‚Í‚Ť‚ż‚ń‚Ć‰đ‚Ż‚Ü‚š‚ń‚Ĺ‚ľ‚˝B

‚˘‚낢‚ë‚ĆŽžŠÔ‚Ş‚Š‚Š‚Á‚Ä‚ľ‚Ü‚˘‚Ü‚ľ‚˝Bl‚Ś‚˝‚ą‚Ć‚Ě‚ ‚炡‚ś‚đ‘—‚č‚Ü‚ˇB

 

yŽŽz

 

 

 

(1)‚́AŽŸ‚̂悤‚ÉŠm”F‚Ĺ‚Ť‚Ü‚ˇB

 

(A)‚́AŽŸ‚̍P“™ŽŽ‚ɂ‚˘‚āA

’†ƒJƒbƒR‚Ě‚Č‚Š‚Ěk‚đ1‚Š‚çn‚Ü‚Ĺ•Ď‚Ś‚āAŽÎ‚߂ɏÁ‚ľ‚Ä‚˘‚­‚ĆŠm”F‚Ĺ‚Ť‚Ü‚ˇB

 

(B)‚́AŽŸ‚̍P“™ŽŽ‚ɂ‚˘‚āA

’†ƒJƒbƒR‚Ě‚Č‚Š‚Ěk‚đ1‚Š‚çn‚Ü‚Ĺ•Ď‚Ś‚āAŽÎ‚߂ɏÁ‚ľ‚Ä‚˘‚­‚ĆŠm”F‚Ĺ‚Ť‚Ü‚ˇB

 

(C)ˆČ‰ş‚ŕ“Ż—l‚Ĺ‚ˇB

 

(2)‚́A

 

(3)‚́A

 

(4)‚́A

 

“Ż—l‚É‚ľ‚āA(5)ˆČ‰ş‚ŕŒvŽZ‚Ĺ‚Ť‚Ü‚ˇB

 

•Ę‚Ě•ű–@‚ŕ‚Ý‚Ä‚Ý‚Ü‚ˇB

 

(5)‚́AŽŸ‚̍P“™ŽŽ‚ɂ‚˘‚āA

k‚đ1‚Š‚çn‚Ü‚Ĺ•Ď‚Ś‚āAc‚ɍ‡Œv‚ľ‚Ü‚ˇB

 

‚ą‚ĚŽŽ‚đ‹‚ß‚é•”•Ş‚ɂ‚˘‚Ä‰đ‚Ť‚Ü‚ˇB

‚Ȃ̂ŁA

 

(6)ˆČ‰ş‚ŕ“Ż—l‚É‚Ĺ‚Ť‚Ü‚ˇ‚ށAŒvŽZ‚ÍČ—Ş‚ľ‚Ü‚ˇB

 

 

–â‘č1

 

–â‘č2

 

–â‘č3

 

–â‘č4

 

 

ˆČ‰şA–â‘č5A–â‘č6‚ÉŠÖ‚ľ‚čl‚Ś‚˝‚ą‚Ć‚đ‘‚˘‚Ä‚Ý‚Ü‚ˇB

 

œ‚ť‚ę‚ź‚ę‚ĚŽŽ‚đ“WŠJ‚ľ‚Ä‚Ý‚Ü‚ˇB

 

œŽŸ‚̂悤‚É•\‚š‚é‚Ɖź’č‚ľ‚Ü‚ˇB

k1‚Š‚ç‚Ě˜a‚đ‹‚ß‚éŽŽ‚Ĺ‚ˇ‚ށA‰ź‚Ék0‚Ć‚ˇ‚é‚ƁA’萔€‚Í0‚ƍl‚Ś‚ç‚ę‚Ü‚ˇB

 

‰ź’č‚đ—p‚˘‚é‚ƁA

‰şü‚́Ap{1”Ô–Ú‚Ě€‚Ĺ‚ˇB

 

ŽŸ‚ɁA ˆÍ‚Ý  ‚đŒöŽŽ‚Ć‚ľ‚čl‚Ś‚é‚ƁA

 

‰ŠF‚ĚŽŽ‚Ɛ…F‚ĚŽŽ‚ĚŒW”‚đ”äŠr‚ľ‚āA

ĽĽĽ

ĽĽĽ

 

 

ˆČă‚Š‚çŒW”‚đ1‚‚¸‚ÂŒˆ’č‚Ĺ‚Ť‚Ü‚ˇB

ĽĽĽ

ˆę”Ę“I‚É‹‚ß‚é‚̂́A“ď‚ľ‚˘‚Ĺ‚ˇB

 

‹ď‘Ě“I‚Č’l‚́AŽŸ‚Ě•\‚̂悤‚É‚Č‚č‚Ü‚ˇB

m

1

 

 

 

 

 

 

 

2

 

 

 

 

 

 

3

0

 

 

 

 

 

4

0

 

 

 

 

5

0

0

 

 

 

6

0

0

 

 

7

0

0

0

 

 

‚ą‚ą‚ŁA2”Ô–Ú‚ĚŒW”‚Ş’č”‚Ě1/2A“Y‚ŚŽš‚Ş4ˆČă‚Ě‹ô”‚ĚŒW”‚Ě’l‚Ş0‚Ĺ‚ ‚é‚ą‚Ć‚É‹C‚Ă‚Ť‚Ü‚ˇB(**)

m‚Ş3ˆČă‚̊‚Ě‚Ć‚ŤAn‚Ě1ŽŸ‚̍€‚Ş‚ ‚č‚Ü‚š‚ńBi  ‚đˆö”‚É‚ŕ‚‚Ƃ˘‚¤‚ą‚Ć‚Ĺ‚ˇj

 

 

œŽŸ‚̂悤‚É‚¨‚Ť‚Ü‚ˇB

 

—á‚Ś‚΁A

‚Ĺ‚ˇ‚ށAm‚đ‚ť‚Ě‚Ü‚Ü‚É‚ľ‚Ä‚¨‚­‚ƁA

n1‚Ć‚ˇ‚é‚ƁA

‚Ć‚Č‚čAm2A3‚Ě‚Ć‚ŤAŒW”‚Ě˜a‚Ş1‚É‚Č‚č‚Ü‚ˇB

‚ą‚ę‚Í(*)‚ć‚čA ‚ĚŒW” ‚đˆÓ–Ą‚ľ‚Ü‚ˇB

 

“Ż—l‚ɁA

‚ɂ‚˘‚āAn1‚Ć‚ˇ‚é‚ƁA

‚Ć‚Č‚čAm4A5‚Ě‚Ć‚ŤAŒW”‚Ě˜a‚Ş1‚É‚Č‚č‚Ü‚ˇB

‚ą‚ę‚Í(*)‚ć‚čA ‚ĚŒW” ‚đˆÓ–Ą‚ľ‚Ü‚ˇB

 

 ‚́Am‚Ş3ˆČă‚̊‚Ě‚Ć‚Ť‚Ín‚Ě2ŽŸ‚ŏI‚í‚čAm‚Ş‹ô”‚Ě‚Ć‚Ť‚Ín‚Ě1ŽŸ‚ŏI‚í‚é‚悤‚Ĺ‚ˇB

‚ą‚Ě‚ą‚Ć‚đˆę”Ę“I‚É‚˘‚¤‚̂́A“ď‚ľ‚˘‚Ĺ‚ˇB

 

(**)‚đ”F‚ß‚é‚ƁAŽŸ‚Ě‚ą‚Ć‚Ş‚í‚Š‚č‚Ü‚ˇB(  ‚Č‚Ě‚Ĺ)

‚‚܂čAŠď””Ô–Ú‚ĚŒW”‚̍‡Œv‚ށA1/2‚Ĺ‚ˇB

‚ą‚Ě‚ą‚Ƃ́A ‚Ȃ̂ŁA ‚Ş (n{1) ‚đˆö”‚É‚ŕ‚‚ą‚Ć‚đŽŚ‚ľ‚Ü‚ˇB(***)

 

œŽŸ‚̂悤‚É•\‚ˇ‚ą‚Ć‚É‚ľ‚Ü‚ˇB

 

‚ˇ‚é‚ƁA

 

‚˝‚ß‚ľ‚ɁAn‚Ĺ”÷•Ş‚ľ‚Ä‚Ý‚Ü‚ˇB

‚ł‚ç‚É‘S‘Ě‚đm‚ĹŠ„‚č‚Ü‚ˇB

 

m‚Ş‹ô”‚Ě‚Ć‚Ť‚́AĹŒă‚̍€‚Ş’č”‚Č‚Á‚Ä‚ľ‚Ü‚˘‚Ü‚ˇ‚ށA‚ť‚Ěę‡‚͐؂čŽĚ‚Ä‚é‚ą‚Ć‚É‚ľ‚Ü‚ˇB

(“ąŠÖ”‚ĚŽŽ‚́AĹŒă‚Ín‚Ě2ŽŸ‚ĚŽŽ‚É‚Č‚č‚Ü‚ˇ)

‚ť‚¤‚ˇ‚é‚ƁAŽŽ‚ĚŒ`‚Š‚çAă‚ĚŽŽ‚́A ‚đˆÓ–Ą‚ľ‚Ü‚ˇB

m‚ŞŠď”‚Č‚ç‚΁A ‚ƍl‚Ś‚ç‚ę‚é‚̂ŁA ‚ŕ (n{1) ‚đˆö”‚É‚ŕ‚‚ą‚Ć‚É‚Č‚č‚Ü‚ˇB

‚ˇ‚é‚ƁA(***)‚Ć‚ ‚í‚š‚āAm‚ŞŠď”‚Ě‚Ć‚ŤA ‚Í ‚đˆö”‚É‚ŕ‚‚ą‚Ć‚É‚Č‚č‚Ü‚ˇB

 

œm‚Ş‹ô”‚Ěę‡‚đl‚Ś‚Ü‚ˇB

ŒW”‚Ém‚đŽc‚ľ‚Ü‚ˇ‚ށAŽw”‚Í‹ď‘Ě“I‚Ȑ”‚Ĺ•\‚ľ‚Ü‚ˇB

 

—á‚Ś‚΁Am2‚Ě‚Ć‚ŤA

‚ą‚ą‚ŁAn|1/2‚Ć‚ľ‚Ä‚Ý‚Ü‚ˇB

‚Ć‚Č‚čA2n{1‚đˆö”‚É‚ŕ‚ż‚Ü‚ˇB

 

—á‚Ś‚΁Am4‚Ě‚Ć‚ŤA

‚ą‚ą‚ŁAn|1/2‚Ć‚ľ‚Ä‚Ý‚Ü‚ˇB

‚Ć‚Č‚čA2n{1‚đˆö”‚É‚ŕ‚ż‚Ü‚ˇB

 

ŽŽ‚ĚŒ`‚Š‚ç•K‘R“I‚É2n{1‚đˆö”‚É‚ŕ‚‚悤‚Ĺ‚ˇ‚ށAˆę”Ę“I‚É‚˘‚¤‚Ě‚Í“ď‚ľ‚˘‚Ĺ‚ˇB

 

u‘‹N‚Ť‚Ě‚¨‚ś‚ł‚ńv 03/16 16Žž33•Ş@ŽóM  XV 3/18

–â‘č5A6‚đ‰đ‚˘‚˝l‚Ş‚˘‚é‚Ćƒ[ƒ‹‚đ‚˘‚˝‚ž‚˘‚˝‚̂ŁA‚ą‚ś‚‚Ż‚Ä‚Ý‚Ü‚ľ‚˝B

‚â‚Í‚čA‚ˇ‚Á‚Ť‚č‰đ‚Ż‚˝‚Ć‚˘‚¤“ŕ—e‚Ĺ‚Í‚Č‚­A‚ą‚¤‚ˇ‚ę‚Ίm”F‚Ĺ‚Ť‚é‚Ć‚˘‚¤“ŕ—e‚Ĺ‚ˇ‚ށB

l‚Ś‚˝‚ą‚Ć‚Ě‚ ‚炡‚ś‚đ‘—‚č‚Ü‚ˇB

 

–â‘č5A6

œ‚ą‚Ě–â‘č‚ɂ‚˘‚āA

‚Č‚ş‚ť‚¤‚Č‚é‚Ě‚Š‚́A“ď‚ľ‚˘‚Ĺ‚ˇB

‚ť‚¤‚Č‚Á‚Ä‚˘‚é‚ą‚Ć‚đŠm”F‚ˇ‚é‚̂́A‰˝‚Ć‚Š‚Ĺ‚Ť‚Ü‚ˇB

 

œŽŽ

 

œ€”ő

ă‚Ě(3)‚ĚŽŽ‚đl‚Ś‚Ü‚ˇB

 

ŽŸ‚Ě•\‚̂悤‚ɏcA‰Ą‚É1‚Š‚çn‚Ü‚ĹŒŠo‚ľ‚đ‚‚Ż‚Ü‚ˇB

•\‚Ě’†‚́AŒŠo‚ľ‚̐ς̒l‚đ‹L“ü‚ľ‚Ü‚ˇB

 

Še‹ć‰ć‚ĚĎ‚Ě‡Œv‚́AŒŠo‚ľ‚Ě—§–@”‚É‚Č‚Á‚Ä‚˘‚Ü‚ˇB

—á‚Ś‚΁Ak”Ô–Ú‚Ě‹ć‰ć‚́A

 

•\‚Ě’†‚̐ς̒l‚̍‡Œv‚đA‚Ü‚¸‰Ą‚ɏŹŒv‚đŒvŽZ‚ľAŽŸ‚ɏŹŒv‚đc‚ɍ‡Œv‚ľ‚Ä‹‚ß‚Ü‚ˇB

‹ć‰ć

1

2

3

 

k

 

n

 

 

1

2

3

ĽĽĽ

k

ĽĽĽ

n

ŹŒv

1

1*1

1*2

1*3

 

1*k

 

1*n

1*(1+2+3+ĽĽĽ+n)

2

2*1

2*2

2*3

 

2*k

 

2*n

2*(1+2+3+ĽĽĽ+n)

3

3*1

3*2

3*3

 

3*k

 

3*n

3*(1+2+3+ĽĽĽ+n)

ĽĽĽ

 

 

 

 

 

 

 

 

k

k*1

k*2

k*3

 

k*k

 

k*n

k*(1+2+3+ĽĽĽ+n)

ĽĽĽ

 

 

 

 

 

 

 

 

n

n*1

n*2

n*3

 

n*k

 

n*n

n*(1+2+3+ĽĽĽ+n)

‡Œv

 

(1+2+3+ĽĽĽ+n)* (1+2+3+ĽĽĽ+n)

‚ą‚ĚŒ‹‰Ę‚ɁA(1)‚ĚŽŽ‚đŽg‚Ś‚΁A(3)‚Ş“ą‚Ż‚Ü‚ˇB

 

œŽŸ‚̂悤‚ɁA•ĎŒ`‚ľ‚Ü‚ˇB

 

ŽŸ‚̂悤‚ɍl‚Ś‚Ü‚ˇB

‹ô”ć‚Ě˜a‚Ěę‡‚ɂ́A‰Ą‚ĚŒŠo‚ľ‚É•˝•ű”Ac‚ĚŒŠo‚ľ‚ɘa‚މŠF‚ĚŽŽ‚ɂȂ鐔—ń‚đ‘I‚ԁB

Šď”ć‚Ě˜a‚Ěę‡‚ɂ́A‰Ą‚ĚŒŠo‚ľ‚É—§–@”Ac‚ĚŒŠo‚ľ‚ɘa‚ސ…F‚ĚŽŽ‚ɂȂ鐔—ń‚đ‘I‚ԁB

 

‹ď‘Ě“I‚É‚â‚Á‚Ä‚Ý‚Ü‚ˇB

(4)‚ɂ‚˘‚Ä

‚ć‚čAc‚ĚŒŠo‚ľ‚ÉŽŸ‚̐”—ń‚đl‚Ś‚Ü‚ˇB

‰€‚́A1‚Ĺ‚Č‚˘‚Ć‹ć‰ć1‚Ě’l‚ށA1‚É‚Č‚č‚Ü‚š‚ńB

 

‹ć‰ć

1

2

3

 

k

 

n

 

12

22

32

ĽĽĽ

k2

ĽĽĽ

n2

1

1*12

1*22

1*32

 

1*k2

 

1*n2

 

 

 

 

ĽĽĽ

 

 

 

 

 

 

 

 

 

ĽĽĽ

 

 

 

 

 

 

 

 

 

 

Šm‚Š‚ß

”—ń‚Ě˜a‚́A

k”Ô–Ú‚Ě‹ć‰ć‚́A

‚ć‚čAŠm‚Š‚ß‚ç‚ę‚Ü‚ľ‚˝B

 

(5)‚ɂ‚˘‚Ä

‚ć‚čAc‚ĚŒŠo‚ľ‚ÉŽŸ‚̐”—ń‚đl‚Ś‚Ü‚ˇB

‰€‚́A1‚Ĺ‚Č‚˘‚Ć‹ć‰ć1‚Ě’l‚ށA1‚É‚Č‚č‚Ü‚š‚ńB

 

‹ć‰ć

1

2

3

 

k

 

n

 

13

23

33

ĽĽĽ

k3

ĽĽĽ

n3

1

1*13

1*23

1*33

 

1*k3

 

1*n3

 

 

 

 

ĽĽĽ

 

 

 

 

 

 

 

 

 

ĽĽĽ

 

 

 

 

 

 

 

 

 

 

Šm‚Š‚ß

”—ń‚Ě˜a‚́A

k”Ô–Ú‚Ě‹ć‰ć‚́A

‚ć‚čAŠm‚Š‚ß‚ç‚ę‚Ü‚ľ‚˝B

 

—ݏć˜a‚ĚŒvŽZ‚Ş‚Ĺ‚Ť‚Ä‚˘‚é‚ŕ‚̂ɂ‚˘‚ẮA“Ż—l‚Ě•ű–@‚ĹŠm”F‚Ĺ‚Ť‚Ü‚ˇB

iŒvŽZ‚Í–Ę“|‚Ĺ‚ˇ‚ށj

 

œ—ݏć˜a‚ĚŒvŽZ‚Ş‚Ĺ‚Ť‚Ä‚˘‚Č‚˘‚ŕ‚̂ɂ‚˘‚Ä‚ŕA“Ż‚ś‚悤‚ɍl‚Ś‚Ü‚ˇB

 

l‚Ś•ű‚Ş‚í‚Š‚ę‚΂悢‚̂ŁA’Ⴂ—ݏć˜a‚Ĺ‚â‚č‚Ü‚ˇB

 

›6ć˜a‚Ěę‡

S2‚ĚŽŽ‚ށAn‚Ě3ŽŸŽŽ‚Ȃ̂ŁAS6S2~(n‚Ě4ŽŸŽŽ) ‚ƍl‚Ś‚ç‚ę‚Ü‚ˇB

˜a‚Ş4ŽŸŽŽ‚Ȃ̂ŁAl‚Ś‚鐔—ń‚Ěˆę”ʍ€‚Ín‚Ě3ŽŸŽŽ‚Ĺ‚ˇB

‚ƍl‚Ś‚ç‚ę‚Ü‚ˇB

 

‹ć‰ć

1

2

3

4

5

 

k

 

12

22

32

42

52

ĽĽĽ

k2

1

1

4

9

16

25

 

k2

 

 

 

 

ĽĽĽ

 

 

 

 

 

 

 

 

 

2”Ô–Ú‚Ě‹ć‰ć‚Š‚çA

3”Ô–Ú‚Ě‹ć‰ć‚Š‚çA

4”Ô–Ú‚Ě‹ć‰ć‚Š‚çA

5”Ô–Ú‚Ě‹ć‰ć‚Š‚çA

 

‚ą‚ę‚ç‚đ˜A—§‚ł‚š‚Ä‰đ‚­‚ĆA

 

k”Ô–Ú‚Ě‹ć‰ć‚́A

 

‰€1A‘ć2€ˆČ~ ‚Ě‘ćn€‚Ü‚Ĺ‚Ě˜a‚́A

‚Ć‚Č‚čA‚ł‚Ť‚ÉŒvŽZ‚ľ‚˝ŽŸ‚ĚŽŽ‚Ěˆę•”‚Ćˆę’v‚ľ‚Ü‚ˇB

 

›7ć˜a‚Ěę‡

S3‚ĚŽŽ‚ށAn‚Ě4ŽŸŽŽ‚Ȃ̂ŁAS7S3~(n‚Ě4ŽŸŽŽ) ‚ƍl‚Ś‚ç‚ę‚Ü‚ˇB

˜a‚Ş4ŽŸŽŽ‚Ȃ̂ŁAl‚Ś‚鐔—ń‚Ěˆę”ʍ€‚Ín‚Ě3ŽŸŽŽ‚Ĺ‚ˇB

‚ƍl‚Ś‚ç‚ę‚Ü‚ˇB

 

‹ć‰ć

1

2

3

4

5

 

k

 

13

23

33

43

53

ĽĽĽ

k3

1

1

8

27

64

125

 

k3

 

 

 

 

ĽĽĽ

 

 

 

 

 

 

 

 

 

2”Ô–Ú‚Ě‹ć‰ć‚Š‚çA

3”Ô–Ú‚Ě‹ć‰ć‚Š‚çA

4”Ô–Ú‚Ě‹ć‰ć‚Š‚çA

5”Ô–Ú‚Ě‹ć‰ć‚Š‚çA

 

‚ą‚ę‚ç‚đ˜A—§‚ł‚š‚Ä‰đ‚­‚ĆA

 

k”Ô–Ú‚Ě‹ć‰ć‚́A

 

‰€1A‘ć2€ˆČ~ ‚Ě‘ćn€‚Ü‚Ĺ‚Ě˜a‚́A

‚Ć‚Č‚čA‚ł‚Ť‚ÉŒvŽZ‚ľ‚˝ŽŸ‚ĚŽŽ‚Ěˆę•”‚Ćˆę’v‚ľ‚Ü‚ˇB

 

œˆę”Ę“I‚ÉŒŠ’Ę‚ˇ‚ą‚Ƃ́A“ď‚ľ‚˘‚Ĺ‚ˇB

2mć‚Ě˜a‚ĚŠm”F‚đ‚ˇ‚é‚ɂ́AS2‚Şn‚Ě3ŽŸŽŽ‚Ȃ̂ŁA˜a‚ށA2m{1|32m|2ŽŸŽŽ‚ɂȂ鐔—ń‚đl‚Ś‚Ü‚ˇB

ˆę”ʍ€‚́A2m|3ŽŸŽŽ‚Ĺ‚ˇB

2m{1ć‚Ě˜a‚ĚŠm”F‚đ‚ˇ‚é‚ɂ́AS3‚Şn‚Ě4ŽŸŽŽ‚Ȃ̂ŁA˜a‚ށA2m{2|42m|2ŽŸŽŽ‚ɂȂ鐔—ń‚đl‚Ś‚Ü‚ˇB

ˆę”ʍ€‚́A2m|3ŽŸŽŽ‚Ĺ‚ˇB

 

‚ą‚ę‚ç‚đŠm”F‚ˇ‚é‚ɂ́A‹ć‰ć2‚Š‚ç‹ć‰ć2m|1‚Ü‚Ĺ‚Ě2m|2ŒÂ‚ɂ‚˘‚āA˜A—§•ű’öŽŽ‚đě‚ę‚΁A‚悢‚ą‚Ć‚É‚Č‚č‚Ü‚ˇB

ŒvŽZ‚Í‚Ć‚Ä‚ŕ‘ĺ•Ď‚ŁAŒťŽŔ“I‚É‚ÍŽ•‚Ş‚˝‚ż‚Ü‚š‚ńB

 

ƒ…‚Ě—Ź‚ęF–c‘ĺ‚ČŽžŠÔ‚Ć‘ĺ•Ď‚Č˜J—Í‚É‚ÍŠ´ŽÓ‚Ě”O‚Ĺˆę”t‚Ĺ‚ˇ„

 

NO4uKasamav           03/11 23Žž58•Ş@ŽóM  XV 3/18

–â‘č‚P

–â‘č‚ĚŠÖŒWŽŽ‚đ

S4=S2(aS1+b)

‚Ć‚ľA•â‘Ť‚P‚Ĺ‹‚ß‚˝—ݏć˜a‚đ‚ ‚Ä‚Í‚ß‚Ü‚ˇB

(6n5+15n4+10n3-n)/30

=

(2n3+3n2+n)/6~{a(n2+n)/2+b}

=

{2an5+5an4+(4b+4a)n3+(6b+a)n2+2bn}/12

Še€‚ĚŒW”‚đ”äŠr‚ˇ‚é‚ƁA

-1/30=b/6, 0=b/2+a/12, 1/3=b/3+a/3, 1/2=5a/12, 1/5=a/6

‚ą‚ę‚đ‰đ‚˘‚āA

a=6/5, b=-1/5

‚ć‚Á‚āA

S4

=

S2(6S1/5-1/5)

=

S2(6S1-1)/5

‚Ć‚Č‚č‚Ü‚ˇB

–â‘č‚Q

‘O–â‚Ć“Ż—l‚ɁA

S5=aS13+bS12+cS1

‚Ć‚ˇ‚é‚ƁA

(2n6+6n5+5n4-n2)/12

=

a{(n2+n)/2}3+b{(n2+n)/2}2+c(n2+n)/2

=

{an6+3an5+(2b+3a)n4+(4b+a)n3+(4c+2b)n2+4cn}/8

Še€‚ĚŒW”‚đ”äŠr‚ˇ‚é‚ƁA

0=c/2, -1/12=c/2+b/4, 0=b/2+a/8, 5/12=b/4+3a/8, 1/2=3a/8, 1/6=a/8

‚ą‚ę‚đ‰đ‚˘‚āA

a=4/3, b=-1/3, c=0

‚ć‚Á‚āA

S5

=

4S13/3-S12/3

=

S12(4S1-1)/3

‚Ć‚Č‚č‚Ü‚ˇB

–â‘č‚R

‘O–â‚Ć“Ż—l‚ɁA

S6=S2(aS12+bS1+c)

‚Ć‚ˇ‚é‚ƁA

(6n7+21n6+21n5-7n3+n)/42

=

(2n3+3n2+n)/6~[a{(n2+n)/2}2+b(n2+n)/2+c]

=

{2an7+7an6+(4b+9a)n5+(10b+5a)n4+(8c+8b+a)n3+(12c+2b)n2+4cn}/24

Še€‚ĚŒW”‚đ”äŠr‚ˇ‚é‚ƁA

1/42=c/6, 0=c/2+b/12, -1/6=c/3+b/3+a/24, 0=5b/12+5a/24, 1/2=b/6+3a/8, 1/2=7a/24, 1/7=a/12

‚ą‚ę‚đ‰đ‚˘‚āA

a=12/7, b=-6/7, c=1/7

‚ć‚Á‚āA

S6

=

S2(12S12/7-6S1/7+1/7)

=

S2(12S12-6S1+1)/7

‚Ć‚Č‚č‚Ü‚ˇB

–â‘č‚S

‘O–â‚Ć“Ż—l‚ɁA

S7=aS14+bS13+cS12+dS1

‚Ć‚ˇ‚é‚ƁA

(3n8+12n7+14n6-7n4+2n2)/24

=

a{(n2+n)/2}4+b{(n2+n)/2}3+c{(n2+n)/2}2+d(n2+n)/2

=

{an8+4an7+(2b+6a)n6+(6b+4a)n5+(4c+6b+a)n4+(8c+2b)n3+(8d+4c)n2+8dn}/16

Še€‚ĚŒW”‚đ”äŠr‚ˇ‚é‚ƁA

0=d/2, 1/12=d/2+c/4, 0=c/2+b/8, -7/24=c/4+3b/8+a/16, 0=3b/8+a/4, 7/12=b/8+3a/8, 1/2=a/4, 1/8=a/16

‚ą‚ę‚đ‰đ‚˘‚āA

a=2, b=-4/3, c=1/3, d=0

‚ć‚Á‚āA

S7

=

2S14-4S13/3+S12/3

=

S12(6S12-4S1-1)/3

‚Ć‚Č‚č‚Ü‚ˇB

–â‘č‚T

•â‘Ť‚P‚ć‚čS3=(n4+2n3+n2)/4=n2(n2+1)2‚Ȃ̂ŁA•â‘Ť‚Q‚ĚŒ‹‰Ę‚đŽg‚Á‚āASm(x)‚Şx2‚Ć(x+1)2‚ĹŠ„‚čŘ‚ę‚é‚ą‚Ć‚đŒž‚Ś‚΂悢B

‚Ü‚¸ASm(0)=0‚Ȃ̂ŁASm(x)‚ɒ萔€‚Í‚Č‚­x‚ĹŠ„‚čŘ‚ę‚Ü‚ˇB‚Ü‚˝ASm(x)-xm/2‚Í‹ôŠÖ”‚Ȃ̂ŁA1ŽŸ€‚Í‚Č‚­x2‚Ĺ‚ŕŠ„‚čŘ‚ę‚é‚̂ŁAy=Sm(x)‚Í(0,0)‚ĹxŽ˛‚ɐڂľ‚Ü‚ˇBSm(x)‚Íx+1/2‚Ě‹ôŠÖ”‚ž‚Š‚çAx=-1/2‚ÉŠÖ‚ľ‚Ä‘ÎĚ‚ĹA(-1,0)‚Ĺ‚ŕxŽ˛‚ɐڂľ‚Ü‚ˇB‚ć‚Á‚āASm(x)‚Íx2‚Ć(x+1)2‚ĹŠ„‚čŘ‚ę‚Ü‚ˇB‚ľ‚˝‚Ş‚Á‚āASm‚ÍS3‚ĹŠ„‚čŘ‚ę‚Ü‚ˇB

–â‘č‚U

‘O–â‚Ć“Ż‚ś‚­AS2=(2n3+3n2+n)/6=n(n+1)(n+1/2)/3‚Ȃ̂ŁASm(x)‚Şx‚Ćx+1‚Ćx+1/2‚ĹŠ„‚čŘ‚ę‚é‚ą‚Ć‚đŒž‚Ś‚΂悢B

‚Ü‚¸ASm(x)‚Íx‚ĹŠ„‚čŘ‚ę‚Ü‚ˇBy=Sm(x)‚Í(0,0)‚đ’Ę‚čA(-1/2,0)‚Ĺ‘ÎĚ‚ž‚Š‚ç(-1,0)‚ŕ’Ę‚é‚̂ŁASm(x)‚Íx+1‚ĹŠ„‚čŘ‚ę‚Ü‚ˇB‚ł‚ç‚ɁASm(x)‚ÍŠďŠÖ”‚Č‚Ě‚Ĺ(-1/2,0)‚ŕ’Ę‚čAx+1/2‚Ĺ‚ŕŠ„‚čŘ‚ę‚Ü‚ˇB‚ľ‚˝‚Ş‚Á‚āASm‚ÍS2‚ĹŠ„‚čŘ‚ę‚Ü‚ˇB

•â‘Ť‚P

ŽŸ‚̂悤‚Ȑ”—ń‚đl‚Ś‚Ü‚ˇB

image001

{k5-(k-1)5}

ăŽŽ{}‚Ě’†‚đ“WŠJ‚ˇ‚é‚ƁA

image001

{k5-(k-1)5}

=

image001

{5k4-10k3+10k2-5k+1}

=

5

image001

k4

-10

image001

k3

+10

image001

k2

-5

image001

k

+

image001

1

=

5S4-10S3+10S2-5S1-n

‚Ć‚Č‚č‚Ü‚ˇBˆę•űAk=1,2,3,ĽĽĽ,n‚Ə‡ŽŸ“WŠJ‚ˇ‚é‚ƁA

image001

{k5-(k-1)5}

=

{15-05}

+

{25-15}

+

EEE

+

{n5-(n-1)5}

=

n5

‚Ć‚Č‚čA‚ą‚ę‚ç‚Í“™‚ľ‚˘‚̂ŁA

5S4-10S3+10S2-5S1-n

=

n5

EEE

‡@

‚Ć‚Č‚č‚Ü‚ˇB“Ż‚ś‚ą‚Ć‚đ6A7A8ŽŸ‚ɂ‚˘‚čs‚¤‚ƁAŽŸ‚ĚŠÖŒWŽŽ‚Ş“ž‚ç‚ę‚Ü‚ˇB

6S5-15S4+20S3-15S2+6S1-n

=

n6

EEE

‡A

 

7S6-21S5+35S4-35S3+21S2-7S1-n

=

n7

EEE

‡B

 

8S7-28S6+56S5-70S4+56S3-28S2+8S1-n

=

n8

EEE

‡C

‚Ü‚˝A–â‘č•ś‚Ĺ—^‚Ś‚ç‚ę‚˝ŠÖŒWŽŽ‚ć‚čA

S2=S1(2n+1)/3

EEE

‡D

S3=S12

EEE

‡E

‚ł‚ç‚ɁA‚ć‚­’m‚ç‚ę‚˝ŽŽ

S1=n(n+1)/2

EEE

‡F

‚đ‰Á‚Ś‚āA‡@`‡F‚đ‰đ‚­‚ƁA

S1=(n2+n)/2

S2=(2n3+3n2+n)/6

S3=(n4+2n3+n2)/4

S4=(6n5+15n4+10n3-n)/30

S5=(2n6+6n5+5n4-n2)/12

S6=(6n7+21n6+21n5-7n3+n)/42

S7=(3n8+12n7+14n6-7n4+2n2)/24

‚Ĺ‚ˇB

•â‘Ť‚Q

Sm(n)‚Ə‘‚˘‚Ä‘ćn€‚Ü‚Ĺ‚Ě˜a‚Ć‚ľ‚Ü‚ˇB‚ť‚ľ‚āASm(n)‚ĆSm(n-1)‚̍ˇ‚đ‚Ć‚é‚ƁA

Sm(n)-Sm(n-1)

=

{1m-0m}+{2m-1m}+EEE+{nm-(n-1)m}

=

nm

‚Ĺ‚ˇB‚˝‚ž‚ľASm(0)=0‚Ĺ‚ˇB‚ą‚ą‚Ĺn‚ÍŽŠ‘R”‚Ĺ‚ˇ‚ށAăŽŽ‚đP“™ŽŽ‚ĆŒŠ‚ę‚΁An‚đŽŔ”x‚É•Ď‚Ś‚Ä‚ŕˇ‚ľŽx‚Ś‚ ‚č‚Ü‚š‚ńB‚‚܂čAŽŔ”x‚ɑ΂ľ‚āA

Sm(x)-Sm(x-1)=xm

,

Sm(0)=0

‚đl‚Ś‚Ü‚ˇBx=0‚Ć‚ˇ‚é‚ƁA

Sm(0)-Sm(-1)=0m

Ë

Sm(-1)=0

EEE

‡G

‚đl‚Ś‚Ü‚ˇBx‚Ě‘ă‚í‚č‚É-x“ü‚ę‚é‚ƁA

Sm(-x)-Sm(-x-1)

=

(-x)m

EEE

‡H

‚Ĺ‚ˇB

Pm(x)

=

(-1)m+1Sm(-x-1)

‚Ć‚¨‚­‚ƁA‡G‡HŽŽ‚ć‚čA

Pm(0)

=

(-1)m+1Sm(-1)

=

0

Pm(x)-Pm(x-1)

=

(-1)m+1Sm(-x-1)-(-1)m+1Sm(-x)

=

xm

‚‚܂čAPm(x)‚́A

Pm(x)-Pm(x-1)=xm

,

Pm(0)=0

‚đ–ž‚˝‚ˇ‚̂ŁASm(x)‚ĆPm(x)‚Í“™‚ľ‚˘‚Ĺ‚ˇB‚ć‚Á‚āA

Sm(x)

=

Pm(x)

Ë

Sm(x)

=

(-1)m+1Sm(-x-1)

EEE

‡I

Ë

Sm(-(x+1/2)-1/2)

=

(-1)m+1Sm((x+1/2)-1/2)

‚ł‚ç‚ɁA‡H‡IŽŽ‚Š‚çSm(-x-1)‚đÁ‹Ž‚ˇ‚é‚ƁA

Sm(-x)-Sm(-x-1)

=

(-x)m

Ë

Sm(-x)-Sm(x)/(-1)m+1

=

(-x)m

Ë

Sm(-x)-(-x)m/2

=

(-1)m+1{Sm(x)-xm/2}

‚Ĺ‚ˇBˆČă‚ć‚čAŽŸ‚ĚŒ‹‰Ę‚đ“ą‚­‚ą‚Ć‚Ş‚Ĺ‚Ť‚Ü‚ˇB

Sm(x)‚́Am‚ŞŠď”‚Ě‚Ć‚Ťx+1/2‚Ě‹ôŠÖ”A‹ô”‚Ě‚Ć‚ŤŠďŠÖ”‚Ĺ‚ˇB

Sm(x)-xm/2‚́Am‚ŞŠď”‚Ě‚Ć‚Ť‹ôŠÖ”A‹ô”‚Ě‚Ć‚ŤŠďŠÖ”‚Ĺ‚ˇB

‚˝‚ž‚ľASm(0)=0‚Ĺ‚ˇB

NO5u‚™‚Žv           03/25 23Žž31•Ş@ŽóM  XV 3/26

‚ˇ‚Ĺ‚Éˆ×‚ł‚ę‚Ä‚¨‚ç‚ę‚Ü‚ˇ‚Ş

 

1/42 n (1+n) (1+2 n) (1-3 n+6 n^3+3 n^4)

    @=1/6 n (1+n) (1+2 n) (c+1/2 b n (1+n)+1/4 a n^2 (1+n)^2)

           ‚ލP“™ŽŽ‚ć‚č@a=12/7,b=-(6/7),c=1/7

    @

 

 

@ŠF‚ł‚ńA–â‘č‚⎿–â‚É“š‚Ś‚Ä‚­‚ž‚ł‚˘Bˆę•”‚Ĺ‚ŕ\‚˘‚Ü‚š‚ń‚Š‚çA‰đ“š‚Ćƒyƒ“ƒl[ƒ€‚đ“Y‚Ś‚āAƒ[ƒ‹‚Ĺ‘—‚Á‚Ä‚­‚ž‚ł‚˘B‘Ň‚Á‚Ä‚˘‚Ü‚ˇB