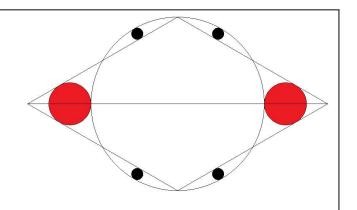
第 412 回 大垣八幡宮奉納算額

第7問題

1つの内角が60°の菱形に赤円2個と黒円4個を容れる。 黒円の直径を知って赤円の直径を求めよ。

術文(答)

赤径=
$$\frac{4(1+\sqrt{3})}{3}$$
 黒径



| **解答**|| 図形の4分の1について、右図のように記号を付ける。

仮定より、∠OAB=30°である。

OB= a とおくと, OA= $\sqrt{3}a$

赤円, 黒円をそれぞれ $O_1(r_1)$, $O_2(r_2)$ とおく。

 $\triangle O_1 AD$ の 3 辺の比は、 $1:2:\sqrt{3}$ であるから、 $O_1 A=2r_1$ より、

OA=
$$a + r_1 + 2r_1 = \sqrt{3}a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r_1 = \frac{\sqrt{3} - 1}{3}a \ \ \ \cdots$$

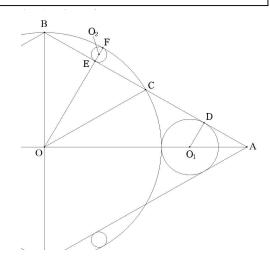
次に、 \triangle BOE の 3 辺の比は、 $1:2:\sqrt{3}$ であるから、 $\text{OE} = \frac{\sqrt{3}}{2}a$

また、 $OE=OF-EF=a-2r_2$ より、

$$\frac{\sqrt{3}}{2}a = a - 2r_2$$
 : $a = 4(2 + \sqrt{3})r_2$

これを①に代入すると, $r_1=\frac{\sqrt{3}-1}{3}\cdot 4(2+\sqrt{3})r_2=\frac{4(1+\sqrt{3})}{3}r_2$

よって,両辺に 2 を掛けると,赤径= $\frac{4(1+\sqrt{3})}{3}$ 黒径 圏



第8問題

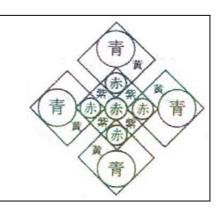
5個の等しい正方形, 黄4個と紫1個を描いて,

その内に青円1個と赤円5個を容れる。

青円の直径を知って赤円の直径を求めよ。

術文(答)

赤円径=青円径/2



解答 与えられた図形は、中央の赤円の中心 O を通る 垂直な直線に関してに上下左右に対称であるから、右図 のようにその 4 分の 1 の部分に記号を付けて考える。 右図で、赤円を $O(r_1)$ 、 $O_1(r_1)$ 、青円を $O_2(r_2)$ とおく。 \triangle KAO₁、 \triangle LO₁C、 \triangle MO₂F は直角二等辺三角形であ るから、3 辺の比は $1:1:\sqrt{2}$ である。

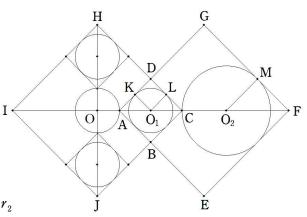
OC=
$$r_1 + \sqrt{2} r_1 + \sqrt{2} r_1 = (1 + 2\sqrt{2}) r_1$$

$$AF = \sqrt{2} r_1 + \sqrt{2} r_1 + r_2 + \sqrt{2} r_2 = 2\sqrt{2} r_1 + (1 + \sqrt{2}) r_2$$

2 OC=AF であるから、 $2 \cdot (1+2\sqrt{2}) r_1 = 2\sqrt{2} \; r_1 + (1+\sqrt{2}) r_2$

整理すると,
$$2(1+\sqrt{2})r_1=(1+\sqrt{2})r_2$$
 ∴ $r_1=\frac{r_2}{2}$

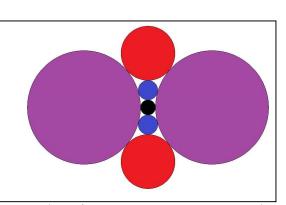
よって,赤円径=青円径/2 答



第9問題

紫円2個と赤円2個で青円2個と黒円を囲む。

青円, 黒円の直径を知って赤円の直径を求めよ。



解答

黒,青,赤,紫円をそれぞれ $O_1(r_1)$, $O_2(r_2)$, $O_3(r_3)$, $O_4(r_4)$ とおく。

 $\triangle O_1O_2O_4$ に三平方の定理を適用すると,

$$(r_1 + r_2)^2 + (r_1 + r_4)^2 = (r_2 + r_4)^2$$
 ... ①

 $\triangle O_1O_3O_4$ に三平方の定理を適用すると,

$$(r_1 + 2r_2 + r_3)^2 + (r_1 + r_4)^2 = (r_3 + r_4)^2$$
 ... ②

②-①より,
$$r_1r_2 + 2r_2^2 + r_1r_3 + 2r_2r_3 + r_2r_4 - r_3r_4 = 0$$

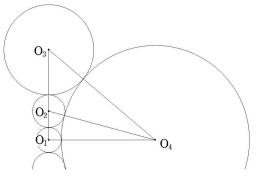
$$r_4$$
 について解くと、 $r_4 = \frac{r_1 r_2 + 2r^2 + r_1 r_3 + 2r_2 r_3}{r_3 - r_2}$

これを①に代入して整理すると、 $-r_2^3 + r_1^2 r_3 + r_1 r_2 r_3 - r_2^2 r_3 = 0$

$$r_3$$
 について解くと, $r_3 = rac{r_2^3}{r_1^2 + r_1 r_2 - r_2^2} = rac{r_2}{rac{r_1}{r_2} \Big(rac{r_1}{r_2} + 1\Big) - 1}$

両辺に 2 を掛けると、
$$2r_3 = \frac{2r_2}{\frac{2r_1}{2r_2}\left(\frac{2r_1}{2r_2} + 1\right) - 1}$$

よって、黒径/青径=極とすると、赤径=青径/{極(極+1)-1} 圏



(2022/4/3 ジョーカー)