˝ŹQUNQPUú
[ŹęŻ]
@@@@@ć30QńwIČĺđ
@@@@@@đĺWúÔF119ú`216ú
mÁęČQťŽn
Ě×ÚOÔĚQťŽŠç޾ȪçAńĚęĘđą˘Äžł˘B
âčPFPSCQXC{Q|T{P{UQ|P
âčQFPTCQQPC{Q|T{P{UQES
NO1uuchinyanv 01/19 1531Ş@óM
uuchinyanv 01/20 1153Ş@óM XV02/16
ŢÍČŞľC˘ÁŤÉđ˘ÄľÜ˘Üľĺ¤B
(đ@1)
âčPFa(1) = 4Ca(2) = 9Ca(n+2) - 5a(n+1) + 6a(n) = 2n - 1
a(n+2) - 5a(n+1) +
6a(n) = 2n - 1
a(n+3) - 5a(n+2) +
6a(n+1) = 2(n+1) - 1
(a(n+3) - a(n+2)) -
5(a(n+2) - a(n+1)) + 6(a(n+1) - a(n)) = 2
(a(n+3) - a(n+2) - 1) -
5(a(n+2) - a(n+1) - 1) + 6(a(n+1) - a(n) - 1) = 0
ąąĹCb(n) = a(n+1)
- a(n) - 1 ƨĆC
b(n+2) - 5b(n+1) +
6b(n) = 0
łçÉCx^2 - 5x + 6
= 0 Ěđ x = 2, 3 đgÁÄĎ`ˇéĆC
b(n+2) - 3b(n+1) =
2(b(n+1) - 3b(n)) = c = 2^n * (b(2) - 3b(1))
b(n+2) - 2b(n+1) = 3(b(n+1)
- 2b(n)) = c
= 3^n * (b(2) - 2b(1))
ąąĹCa(1) = 4,
a(2) = 9, a(3) = 5a(2) - 6a(1) + (2 * 1 - 1) = 22CćčC
b(2) = a(3) - a(2) - 1
= 22 - 9 - 1 = 12
b(1) = a(2) - a(1) - 1
= 9 - 4 - 1 = 4
ČĚĹC
b(n+2) - 3b(n+1) = 2^n
* (12 - 3 * 4) = 0
b(n+2) - 2b(n+1) = 3^n
* (12 - 2 * 4) = 4 * 3^n
b(n+1) - 3b(n) = 0
b(n+1) - 2b(n) = 4 *
3^(n-1)
b(n) = 4 * 3^(n-1)
ťąĹC
a(n+1) - a(n) - 1 =
b(n) = 4 * 3^(n-1)
a(n+1) - a(n) = 4 *
3^(n-1) + 1
a(n) = °[k=1,n-1]{4 * 3^(k-1) +
1} + a(1)
= 4 * (3^(n-1) - 1)/(3 -
1) + (n - 1) + 4
= 2 * 3^(n-1) + n + 1
a(n) = 2 * 3^(n-1) + n
+ 1
ÉČčܡB
âčQFa(1) = 5Ca(2) = 21Ca(n+2) - 5a(n+1) + 6a(n) = 2 * 4^n
a(n+2) - 5a(n+1) +
6a(n) = 2 * 4^n
a(n+2)/4^n -
5a(n+1)/4^n + 6a(n)/4^n = 2
16(a(n+2)/4^(n+2)) -
20(a(n+1)/4^(n+1)) + 6(a(n)/4^n) = 2
8(a(n+2)/4^(n+2) - 1) -
10(a(n+1)/4^(n+1) - 1) + 3(a(n)/4^n - 1) = 0
ąąĹCb(n) =
a(n)/4^n - 1 ƨĆC
8b(n+2) - 10b(n+1) +
3b(n) = 0
łçÉC8x^2 - 10x +
3 = 0 Ěđ x = 1/2, 3/4 đgÁÄĎ`ˇéĆC
b(n+2) - (3/4)b(n+1) =
(1/2)(b(n+1) - (3/4)b(n)) = c = (1/2)^n * (b(2) - (3/4)b(1))
b(n+2) - (1/2)b(n+1) =
(3/4)(b(n+1) - (1/2)b(n)) = c = (3/4)^n * (b(2) - (1/2)b(1))
ąąĹCa(1) = 5,
a(2) = 21CćčC
b(2) = a(2)/4^2 - 1 =
21/16 - 1 = 5/16
b(1) = a(1)/4^1 - 1 =
5/4 - 1 = 1/4
ČĚĹC
b(n+2) - (3/4)b(n+1) =
(1/2)^n * (5/16 - (3/4)(1/4)) = 1/8 * (1/2)^n
b(n+2) - (1/2)b(n+1) =
(3/4)^n * (5/16 - (1/2)(1/4)) = 3/16 * (3/4)^n
b(n+1) - (3/4)b(n) =
1/8 * (1/2)^(n-1)
b(n+1) - (1/2)b(n) =
3/16 * (3/4)^(n-1)
b(n) = (3/4)^n -
(1/2)^n
ťąĹC
a(n)/4^n - 1 = b(n) =
(3/4)^n - (1/2)^n
a(n) = 4^n + 3^n - 2^n
ÉČčܡB
(đ@2)
ęĘÉC
a(n+2) - pa(n+1) +
qa(n) = f(n)
ɨ˘ÄCa(n) đęĘđCs(n) đ˝çŠĚű@ĹŠÂŻ˝ÁęČđCÁęđCơéĆC
a(n+2) - pa(n+1) +
qa(n) = f(n)
s(n+2) - ps(n+1) +
qs(n) = f(n)
(a(n+2) - pa(n+1) +
qa(n)) - (s(n+2) - ps(n+1) + qs(n)) = f(n) - f(n) = 0
(a(n+2) - s(n+2)) -
p(a(n+1) - s(n+1)) + q(a(n) - s(n)) = 0
c(n) = a(n) - s(n) ƨĆC
c(n+2) - pc(n+1) +
qc(n) = 0
ÂÜčCc(n) ÍłĚQťŽĚEÓđ 0 Ćľ˝QťŽĚđšB
ąĚąĆćčC
a(n) = s(n) + c(n)
ƹƪōܡB
ąĚąĆđĽÜŚéĆCĚć¤ÉđąĆŞĹŤÜˇB
âčPFa(1) = 4Ca(2) = 9Ca(n+2) - 5a(n+1) + 6a(n) = 2n - 1
EÓđ 0 Éľ˝QťŽÍC
c(n+2) - 5c(n+1) +
6c(n) = 0
ĹCąęÍ(đ@1)Ě b(n) ĆŻlɾĎĎ`ľCęĘÉCaCb đčĆľÄC
c(n) = a * 2^n + b *
3^n
ƹƪōܡB
ęűĹCÁęđšŞCs(n) =
pn + q ƨĆ
(p(n+2) + q) - 5(p(n+1)
+ q) + 6(pn + q)) = 2n - 1
2pn + (- 3p + 2q) = 2n
- 1
p = 1, q = 1
s(n) = n + 1
ĆÜčܡB
ťąĹC
a(n) = s(n) + c(n) = (n
+ 1) + (a * 2^n + b * 3^n)
ąęćčC
a(1) = (1 + 1) + (a *
2^1 + b * 3^1) = 2 + 2a + 3b = 4
a(2) = (2 + 1) + (a *
2^2 + b * 3^2) = 3 + 4a + 9b = 9
a = 0, b = 2/3
a(n) = (n + 1) + (0 *
2^n + 2/3 * 3^n) = 2 * 3^(n-1) + n + 1
ÉČčܡB
âčQFa(1) = 5Ca(2) = 21Ca(n+2) - 5a(n+1) + 6a(n) = 2 * 4^n
EÓđ 0 Éľ˝QťŽÍC
c(n+2) - 5c(n+1) +
6c(n) = 0
ĹCąęÍCŻlÉľÄC
c(n) = a * 2^n + b *
3^n
ƹƪōܡB
ęűĹCÁęđšŞCs(n) =
p * 4^n ƨĆ
(p * 4^(n+2)) - 5(p *
4^(n+1)) + 6(p * 4^n) = 2 * 4^n
2p = 2
p = 1
s(n) = 4^n
ĆÜčܡB
ťąĹC
a(n) = s(n) + c(n) =
4^n + (a * 2^n + b * 3^n)
ąęćčC
a(1) = 4^1 + (a * 2^1 +
b * 3^1) = 4 + 2a + 3b = 5
a(2) = 4^2 + (a * 2^2 +
b * 3^2) = 16 + 4a + 9b = 21
a = -1, b = 1
a(n) = 4^n + ((-1) *
2^n + 1 * 3^n) = 4^n + 3^n - 2^n
ÉČčܡB
(´z)
ńü`ĚQťŽĹˇËBŠĹÍCޡéÉľÄŕᄁŠŕmęÜšńB
˝žCÍéŠĚÉČčܡŞCŞZśĚ ÍC(đ@1)Ěć¤ÉŽĎ`đěgľÄđ˘Ä˘˝CŞľÜˇB
ąęÍEÓĚŽĚ`ÉËśľÄHvˇéKvŞ čܡŞCťęĹŕŠČčpÍřŤÜˇB
ęűC(đ@2)ĚĹĚlŚűÍńíÉęĘIĹCü`ĚęĘđĆńü`ĚÁęđŠç\ŹĹŤÜˇB
ŕÁĆŕCÁęđđßéĚÍŻlÉEÓĚŽĚ`ÉËśľÄHvŞKvšŞB
(đ@2)Ěč@đmÁ˝ĚÍĺwÉüÁÄŠçšB
ľŠŕCwĹÍČC¨ĚÍwĹÔÉËśľ˝§ÍĚ éVXeĚŽěđßéâčĹľ˝B
ľ˝ŞÁÄCQťŽĹÍČC^ŽűöŽ = ÷ŞűöŽ Ĺľ˝B
{ÉÚÁĢ˝ąĚű@ɢ˝´Žľ˝v˘Ş čܡB
QťŽÍ éӥšŞűöŽĆżĹCˇŞűöŽÍ÷ŞűöŽĚeĘČĚĹC
QťŽĹŕťĚÜÜgŚÜˇËB
ťńČąĆđůŠľv˘oľČŞçđŤÜľ˝B
NO2ulcž¤v@01/21 1644Ş@óM
XV02/16
âčPD
@@{Q|T{P{UQ|Pccc(1)
ŠçC
@@{Q|Q{PR({P|Q){Q|P
@{P|QiPCQCRCcccjơéĆC
@@{PR{Q|P
@@{P^R{P^R{(Q|P)^R{P
@^RiPCQCRCcccjơéĆC
@@{P{(Q|P)^R{P
@QĚĆŤC
@@P{°P
|P(Q|P)^R{Pccc(2)
@ąąĹC
@@PP^R(Q|QP)^R(X|QES)^RP^R
@r°P
(Q|P)^R{PiPCQCRCcccjơéĆC
@@rP^RQ{R^RR{T^RS{ccc{(Q|P)^R{Pccc(3)
@@P^RErP^RR{R^RS{T^RT{ccc{(Q|P)^R{Qccc(4)
@(3)|(4)ŠçC
@@Q^RErP^RQ{Q^RR{Q^RS{ccc{Q^R{P|(Q|P)^R{Q
@@@@@@@Q^RQE(P{P^R{P^RQ{ccc{P^R|P)|P^RQ|(Q|P)^R{Q
@@@@@@@Q^XE{P|(P^R)}^(P|P^R)|P^X|(Q|P)^R{Q
@@@@@@@P^RE(P|P^R)|P^X|(Q|P)^R{Q
@@@@@@@Q^X|P^R{P|(Q|P)^R{Q
@@@@@@@{QER|R|(Q|P)}^R{Q
@@@@@@@(QER|Q|Q)^R{Q
@@rR^QE(QER|Q|Q)^R{Q
@@@@(R||P)^R{P
@(2)ŠçC
@@P^R{r|P
@@@@P^R{{R|P|(|P)|P}^R
@@@@(R|P{R|P|)^R
@@@@(QER|P|)^R
@ąęÍCPĚƫଧˇéD
@@(QER|P|)^R^R
@@QER|P|
@@{P|QQER|P|ccc(5)
@(1)ŠçC
@@{Q|R{PQ({P|R){Q|P
@{P|RiPCQCRCcccjơéĆC
@@{PQ{Q|P
@@{P^Q{P^Q{(Q|P)^Q{P
@
^QiPCQCRCcccjơéĆC
@@
{P
{(Q|P)^Q{P
@QĚĆŤC
@@
P{°P
|P(Q|P)^Q{Pccc(6)
@ąąĹC
@@
PP^Q(Q|RP)^Q(X|RES)^Q|R^Q
@s°P
(Q|P)^Q{PiPCQCRCcccjơéĆC
@@sP^QQ{R^QR{T^QS{ccc{(Q|P)^Q{Pccc(7)
@@P^QEsP^QR{R^QS{T^QT{ccc{(Q|P)^Q{Qccc(8)
@(7)|(8)ŠçC
@@P^QEsP^QQ{Q^QR{Q^QS{ccc{Q^Q{P|(Q|P)^Q{Q
@@@@@@@(P^Q{P^QQ{P^QR{ccc{P^Q)|P^QQ|(Q|P)^Q{Q
@@@@@@@P^QE{P|(P^Q)}^(P|P^Q)|P^S|(Q|P)^Q{Q
@@@@@@@(P|P^Q)|P^S|(Q|P)^Q{Q
@@@@@@@R^S|P^Q|(Q|P)^Q{Q
@@@@@@@{REQ|S|(Q|P)}^Q{Q
@@@@@@@(REQ|Q|R)^Q{Q
@@s(REQ|Q|R)^Q{P
@(6)ŠçC
@@
|R^Q{s|P
@@@|R^Q{{REQ|P|Q(|P)|R}^Q
@@@(|REQ|P{REQ|P|Q{Q|R)^Q
@@@(|Q|P)^Q
@ąęÍCPĚƫଧˇéD
@@
(|Q|P)^Q^Q
@@|Q|P
@@{P|R|Q|Pccc(9)
@(5)|(9)ŠçC
@@(QER|P|){(Q{P)
@@@QER|P{{Pcccij
iĘđj
@@{Q|Q{PR({P|Q){Q|P
@{P|QiPCQCRCcccjơéĆC
@@{PR{Q|P
@ER{{iPCQCRCcccCCCÍčjơéĆC
@@ER{P{({P){R(ER{{){Q|P
@@{({)(R{Q){(R|P)
@ĚPŽČĚĹC
@@R{Qccc(2)
@@{R|Pccc(3)
@(2)ŠçC|QQ@@@|P
@(3)ŠçC|P{R|P@@@O
@@ER|ccc(4)
@PQ|QEPPŠçC(4)ÉPđăüˇéĆC
@@PR|PP@@@Q^R
@(4)ŠçC{P|QQER|P|
iăĹwIA[@ĹŘžˇéj
iĘđťĚQj(1)ŠçC
@@RTQ|UP{PTEX|UES{PST|QS{PQQ
@@STR|UQ{RTEQQ|UEX{RPPO|TS{RTX
@@TTS|UR{TTETX|UEQQ{TQXT|PRQ{TPUW
@{P|iPCQCRCcccjơéĆC
@@PQ|PX|ST
@@QR|QQQ|XPR
@@RS|RTX|QQRV
@@ST|SPUW|TXPOX
@{P|iPCQCRCcccjơéĆC
@@PQ|PPR|TW
@@QR|QRV|PRQS
@@RS|RPOX|RVVQ
@ĚÉńopÍCWCöäRĚäńĹ éĆŢĹŤéDąĚĆŤC
@@WER|P{P|
@QĚĆŤC
@@P{°P
|PWER|P
@@@T{WE(R|P|P)^(R|P)
@@@T{S(R|P|P)
@@@SER|P{P
@ąęÍPĚƫଧˇéD
@@SER|P{P{P|
@QĚĆŤC
@@P{°P
|P(SER|P{P)
@@@S{SE(R|P|P)^(R|P){(|P)
@@@QER|P{{P
@ąęÍPĚƫଧˇéD
@ąęđwIA[@ĹŘžˇéD
@PCQĚĆŤCžçŠÉŹ§ˇéD
@C{PiPjĚĆŤCŹč§ÂĆźčˇéĆC
@@QER|P{{PC{PQER{{Q
@(1)ŠçC
@@{QT{P|U{(Q|P)
@@@@T(QER{{Q)|U(QER|P{{P){Q|P
@@@@POER{T{PO|SER|U|U{Q|P
@@@@UER{{R
@@@@QER{P{{R
@ĚÉ{QĚƫଧˇéD
@Ěɡ×ÄĚŠRÉ¢ÄC
@@QER|P{{Pcccij
âčQD
@@{Q|T{P{UQESccc(1)
ŠçC
@@{Q|Q{PR({P|Q){QES
@{P|QiPCQCRCcccjơéĆC
@@{PR{QES
@@{P^S{PR^SE^S{P^Q
@^SiPCQCRCcccjơéĆC
@@{PR^SE{P^Q
@@{P|QR^SE|R^QR^SE(|Q)
@|QiPCQCRCcccjơéĆC
@@{PR^SE
@ĚÉńopÍC
@@PP|QP^S|Q(Q|QP)^S|Q(QP|QET)^S|QR^S
öäR^SĚäńĹ éĚĹC
@@R^SE(R^S)|PR^S|Q
@@Q{R^S^S
@@QES{R
@@{P|QQES{Rccc(2)
@(1)ŠçC
@@{Q|R{PQ({P|R){QES
@
{P|RiPCQCRCcccjơéĆC
@@
{PQ
{QES
@@
{P^S{PP^QE^S{P^Q
@
^SiPCQCRCcccjơéĆC
@@{PP^QE{P^Q
@@{P|PP^QE|P^QP^QE(|P)
@|PiPCQCRCcccjơéĆC
@@{PP^QE
@ĚÉńopÍC
@@PP|P
P^S|P(Q|RP)^S|P(QP|RET)^S|PP^Q
öäP^QĚäńĹ éĚĹC
@@P^QE(P^Q)|PP^Q|P
@@P{P^Q
^S
@@
S{S^Q
@@{P|RS{Qccc(3)
@(2)|(3)ŠçC
@@S{R|Qcccij
ulcž¤v@01/22 1705Ş@óM XV02/16
âčPD
iĘđj(5)@{P|QQER|P|
đgí¸C
@@(9)@{P|R|Q|P
ĚÝđg¤đ@
@@{P|R|Q|Pccc(9)
ŠçC
@@{P^R{P|^R|(Q{P)^R{P
@ąąĹC
@@^RiPCQCRCcccj
ơéĆC
@@{P||(Q{P)^R{P
@QĚĆŤC
@@P|°P
|P(Q{P)^R{P
@ąąĹC
@@PP^RS^R
@ܽC
@@r°P
(Q{P)^R{P
@@@R^RQ{T^RR{V^RS{ccc{(Q{P)^R{P
ơéĆC
@@P^RErR^RR{T^RS{V^RT{ccc{(Q|P)^R{P{(Q{P)^R{Q
@ÓXđřĆC
@@Q^RErR^RQ{Q^RR{Q^RS{ccc{Q^R{P|(Q{P)^R{Q
@@@@@@@P^RQ{Q^RQE(P{P^R{P^RQ{ccc{P^R|P)|(Q{P)^R{Q
@@@@@@@P^X{Q^XE{P|(P^R)}^(P|P^R)|(Q{P)^R{Q
@@@@@@@P^X{P^RE(P|P^R)|(Q{P)^R{Q
@@@@@@@S^X|P^R{P|(Q{P)^R{Q
@@@@@@@{SER|R|(Q{P)}^R{Q
@@@@@@@(SER|Q|S)^R{Q
@@rR^QE(SER|Q|S)^R{Q
@@@@(QER||Q)^R{P
@@S^R|r|P
@@@@S^R|{QER|P|(|P)|Q}^R
@@@@(SER|P|QER|P{|P{Q)^R
@@@@(QER|P{{P)^R
@ąęÍPĚƫଧˇéD
@@(QER|P{{P)^R^R
@@QER|P{{P
iĘđj(9)@{P|R|Q|P
đgí¸C
@@(5)@{P|QQER|P|
ĚÝđg¤đ@
@@{P|QQER|P|
ŠçC
@@{P^Q{P|^QP^QE(R^Q)|P|^Q{P
@ąąĹC
@@^QiPCQCRCcccj
ơéĆC
@@{P|P^QE(R^Q)|P|^Q{P
@QĚĆŤC
@@P{°P
|P{P^QE(R^Q)|P|^Q{P}
@@@P^Q{P^QE{(R^Q)|P|P}^(R^Q|P)|°P
|P^Q{P
@@@Q{R|P^Q|P|P|°P
|P^Q{P
@@@P{R|P^Q|P|°P
|P^Q{P
@ąąĹC
@@r°P
^Q{P
@@@P^QQ{Q^QR{R^QS{ccc{^Q{P
ơéĆC
@@P^QErP^QR{Q^QS{R^QT{ccc{(|P)^Q{P{^Q{Q
@ÓXđřĆC
@@P^QErP^QQ{P^QR{P^QS{ccc{P^Q{P|^Q{Q
@@@@@@@P^QQE{P|(P^Q)}^(P|P^Q)|^Q{Q
@@@@@@@P^QE(P|P^Q)|^Q{Q
@@@@@@@P^Q|P^Q{P|^Q{Q
@@@@@@@(Q{P|Q|)^Q{Q
@@rQE(Q{P||Q)^Q{Q
@@@@(Q{P||Q)^Q{P
@@P{R|P^Q|P|r|P
@@@@P{R|P^Q|P|{Q|(|P)|Q}^Q
@@@@(Q{QER|P|Q{|P{Q)^Q
@@@@(QER|P{{P)^Q
@ąęÍPĚƫଧˇéD
@@(QER|P{{P)^Q^Q
@@QER|P{{P
âčQD
iĘđj
@@{Q|Q{PR({P|Q){QES
ɨ˘ÄC
@@{P|QiPCQCRCcccj
ơéĆC
@@{PR{QES
@@{P^R{P^R{Q^RE(S^R)
@^RiPCQCRCcccjơéĆC
@@{P{Q^RE(S^R)
@QĚĆŤC
@@P{°P
|PQ^RE(S^R)
@@@P^R{Q^RES^RE{(S^R)|P|P}^(S^R|P)
@@@(Q|QP)^R{W^RE(S|P^R|P|P)
@@@PP^R{QES^R|W^R
@@@QES^R{P
@@@(QES{R)^R
@ąęÍPĚƫଧˇéD
@@(QES{R)^R^R
@@QES{R
@@{P|QQES{Rccc(A)
@@{Q|R{PQ({P|R){QES
ɨ˘ÄC
@@{P|RiPCQCRCcccj
ơéĆC
@@{PQ{QES
@@{P^Q{P^Q{Q
@
^QiPCQCRCcccjơéĆC
@@
{P
{Q
@QĚĆŤC
@@
P{°P
|PQ
@@@P^Q{QE(Q|P|P)^(Q|P)
@@@(Q|RP)^Q{Q|Q
@@@R{Q|Q
@@@Q{P
@ąęÍPĚƫଧˇéD
@@
Q{P^Q
@@S{Q
@@{P|RS{Qccc(B)
@(A)|(B)ŠçC
@@S{R|Q
i˘łłŠCâ衏ܾ˝j
ulcž¤v@01/23 1625Ş@óM XV02/16
âčPDiqgđłÉj
iĘđj{Q|Q{PR({P|Q){Q|P
ĆĎ`ĹŤéĚĹC
@@ER{EQ{{iCCCÍčj
ơéD
@@PR{Q{{Sccc(1)
@@QX{S{Q{Xccc(2)
@ܽC
@@RTQ|UP{PTEX|UES{PQQ
@@STR|UQ{RTEQQ|UEX{RTX
ŠçC
@@RQV{W{R{QQccc(3)
@@SWP{PU{S{TXccc(4)
@(2)|(1)ŠçC
@@U{Q{Tccc(5)
@(3)|(2)ŠçC
@@PW{S{PRccc(6)
@(4)|(3)ŠçC
@@TS{W{RVccc(7)
@(6)|(5)ŠçC
@@PQ{QW@@@U{Sccc(8)
@(7)|(6)ŠçC
@@RU{SQS@@@X{Uccc(9)
@(9)|(8)ŠçC
@@RQ@@@Q^R
@(8)ŠçC
@@S|US|SO
@(5)ŠçC
@@T|U|QT|SP
@(1)ŠçC
@@S|R|Q|S|Q|PP
@@QER|P{{P
@ąęđwIA[@ĹŘžˇéD
@PCQĚĆŤCžçŠÉŹ§ˇéD
@C{PiPjĚĆŤCŹ§ˇéĆźčˇéĆC
@@QER|P{{PC{PQER{{Q
@@{QT{P|U{Q|P
@@@@@T(QER{{Q)|U(QER|P{{P){Q|P
@@@@@(PO|S)ER{T{PO|U|U{Q|P
@@@@@QER{P{{R
@ĚÉ{QĚƫଧˇéD
@Ěɡ×ÄĚŠRÉ¢ÄC
@@QER|P{{P
âčQDiĘđj{Q|Q{PR({P|Q){QES
ĆĎ`ĹŤéĚĹC
@@ES{ER{EQ{iCCCÍčj
ơéD
@@PS{R{Q{Tccc(1)
@@QPU{X{S{QPccc(2)
@ܽC
@@RTQ|UP{QESTEQP|UET{WWR
@@STR|UQ{QESQTEWR|UEQP{RQRQP
ŠçC
@@RUS{QV{W{WRccc(3)
@@SQTU{WP{PU{RQPccc(4)
@(2)|(1)ŠçC
@@PQ{U{QPUccc(5)
@(3)|(2)ŠçC
@@SW{PW{SUQ@@@QS{X{QRPccc(6)
@(4)|(3)ŠçC
@@PXQ{TS{WQRW@@@XU{QV{SPPXccc(7)
@(6)|(5)ŠçC
@@PQ{RPTccc(8)
@(7)|(6)~QŠçC
@@SW{XTV@@@PU{RPXccc(9)
@(9)|(8)ŠçC
@@SS@@@P
@(8)ŠçCT|SP
@(5)ŠçCW|U|R|P
@(1)ŠçCT|S|R|QO
@@S{R|Q
@ąęđwIA[@ĹŘžˇéD
@PCQĚĆŤCžçŠÉŹ§ˇéD
@C{PiPjĚĆŤCŹ§ˇéĆźčˇéĆC
@@S{R|QC{PS{P{R{P|Q{P
@@{QT{P|U{QES
@@@@@T(S{P{R{P|Q{P)|U(S{R|Q){QES
@@@@@(QO|U{Q)ES{(PT|U)ER{(|PO{U)EQ
@@@@@S{Q{R{Q|Q{Q
@ĚÉ{QĚƫଧˇéD
@Ěɡ×ÄĚŠRÉ¢ÄC
@@S{R|Q
i˘đĆ͢Ś¸C ÜčDŤĹÍ čÜšńj
ulcž¤v@02/10 1059Ş@óM XV02/16
NO3uNŤĚ¨śłńv1/21 2133Ş@óM@
uNŤĚ¨śłńv1/22 0944Ş@óM XV02/16
ĄńĚâčÍQđvZľÄ˘Á˝çŤę˘ÉČÁ˝ĚŤęľČčÜľ˝B
vľÔčÉWľ˝yľ˘Ôđ߲šÜľ˝B
âčP
ńńAKˇńđĆčđŻé`ÉźľÜˇB
EęńÚÍEÓĚĎđÁľÜˇB
(1)|(2)ćčA
ąĚKˇńđƾܡB
EńńÚÍEÓđëɾܡB
(3)|(4)ćčA
ąĚKˇńđƾܡB
ŔŰÉđŤÜˇB
EűöŽĚđđp˘Ä(5)ĚŽđĎ`ľÜˇB
@(6)ćčAÍAAöä3ĚäńČĚĹA
@(7)ćčAÍAAöä2ĚäńČĚĹA
@(8)A(9)đA§łš(8)|(9)ćčÉ¢ÄđĆA
EÍKˇČĚĹA
ĚKˇŞAńÂĚäń̡Ě`ÉČÁĢéĚĹA
@
EďĚIÉßéĆA
ČĚĹA
âčQ
âčPđqgÉđŻé`ÉźľÜˇB
ĚźÓđĹčܡB
ČĚĹAƨĆA
É¢ÄđŤÜˇB
EܸKˇđĆčܡB
(10)|(11)ćčA
ąĚKˇńđƾܡB
EűöŽĚđđp˘ÄA(12)ĚŽđĎ`ľÜˇB
@(13)ćčAÍAAöäĚäńČĚĹA
@(14)ćčAÍAAöäĚäńČĚĹA
@(15)A(16)đA§łš(16)|(15)ćčÉ¢ÄđĆA
@
EÍKˇČĚĹA
ĚKˇŞAńÂĚäń̡Ě`ÉČÁĢéĚĹA
@
Eƨ˘˝ĚĹA
@
EďĚIÉßéĆA
ČĚĹA
NO4 uɢÎčZ12v1/24 0214Ş
óM @XV02/16
ɢÎčZ12š
ńĚYŚĆđćʡé˝ßYŚĚăëÉÍsIhđ¯ĢܡB
âč1
ş\Ěć¤ÉđďĚIÉŤoľć2KˇÜĹĆéĆAäńÉČÁĢéĆŢĹŤéĚĹKˇŠçńđtÉvZľÄ˘Ć\Ěć¤ÉłĚńÍ
an=1+n+2*3^(n-1)ĚęĘđ¹ƪ޳ęܡB
n |
@ |
||||||||
@ |
anD.+2-5an+1D+6anD=2n-1 |
@ |
@ |
@ |
@ |
@ |
@ |
||
@ |
anD+2=5an+1D-6anD+2n-1 |
||||||||
@ |
@ |
||||||||
@ |
@ |
anD=(5an+1D-an+2D+2n-1)/6 |
@ |
@ |
@ |
@ |
@ |
||
@ |
@ |
@ |
ć1Kˇ |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
żiD |
ć2Kˇiäńj |
@ |
@ |
@ |
||
@ |
@ |
@ |
i=n-1 |
ŔjD=Ŕ1D*3^(j-1)=8*3^(n-3) |
|||||
@ |
@ |
@ |
@ |
j=n-2 |
r |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
SŔjD=Ŕ1D*(r^j-1)/(r-1)=4*(3^(n-2)-1) |
|||
@ |
@ |
@ |
@ |
@ |
@ |
@ |
żiD=ż1D+SŔjD=5+4*(3^(n-2)-1)=1+4*3^(n-2) |
||
@ |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
SżiD=(n-1)+4*((3^(n-1)-1)/(3-1))=n+2*(3^(n-1)-1)-1 |
|
@ |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
anD=a1D+SżiD=4+n+2*(3^(n-1)-1)-1=1+n+2*3^(n-1) |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
@ |
1 |
a1 |
4 |
@ |
@ |
@ |
@ |
@ |
@ |
4 |
2 |
a2 |
9 |
5 |
@ |
@ |
@ |
5 |
5 |
9 |
3 |
a3 |
22 |
13 |
8 |
@ |
8 |
13 |
18 |
22 |
4 |
a4 |
59 |
37 |
24 |
3 |
32 |
37 |
55 |
59 |
5 |
a5 |
168 |
109 |
72 |
3 |
104 |
109 |
164 |
168 |
6 |
a6 |
493 |
325 |
216 |
3 |
320 |
325 |
489 |
493 |
7 |
a7 |
1466 |
973 |
648 |
3 |
968 |
973 |
1462 |
1466 |
8 |
a8 |
4383 |
2917 |
1944 |
3 |
2912 |
2917 |
4379 |
4383 |
9 |
a9 |
13132 |
8749 |
5832 |
3 |
8744 |
8749 |
13128 |
13132 |
10 |
a10 |
39377 |
26245 |
17496 |
3 |
26240 |
26245 |
39373 |
39377 |
11 |
a11 |
118110 |
78733 |
52488 |
3 |
78728 |
78733 |
118106 |
118110 |
12 |
a12 |
354307 |
236197 |
157464 |
3 |
236192 |
236197 |
354303 |
354307 |
anD=1+n+2*3^(n-1) |
an+1=2+n+2*3^n
EEEE@ |
ŞŹ§ˇéĆŤ |
an+2D=3+n+2*3^(n+1)EEEEA |
ŞŹ§ˇéđŚľÜˇ |
čÓćč |
an+2D-5an+1D+6anD=2n-1 |
an+2D=5an+1D-6anD+2n-1EEEiPj |
iPjÉ@đăüˇéĆ |
an+2D=5*(2+n+2*3^n)-6*(1+n+2*3^(n-1))+2n-1 |
=3+n+2*3^(n+1) |
ĆČ菧ľÄ˘ÜˇB |
ęűĹčÓŠç |
a1D=4,a2D=9Ĺ čźč@ÍyŃć2ĹŹ§ľÄ˘éŠçSÄĚĹŹ§ľÜˇ |
ćÁÄńĚęĘÍ |
anD=1+n+2*3^(n-1)@@EEEEń |
âč2
an+2D-5an+1D+6anD=2E4^nA@a1D=5 A a2D=21
ęĘđ
anD=4^n+3^n-2^n
Ć޾ܡ
ŔŰ
a1 |
5 |
a2 |
21 |
a3 |
83 |
a4 |
321 |
a5 |
1235 |
a6 |
4761 |
a7 |
18443 |
a8 |
71841 |
a9 |
281315 |
a10 |
1106601 |
ĆČč
an+2D-5an+1D+6anD=2E4^n
đ˝ľÄ˘ÜˇB
anD=4^n+3^n-2^n
an+1D=4^(n+1)+3^(n+1)-2^(n+1) EEEE@
ŞŹ§ˇéĆŤ
an+2D=4^(n+2)+3^(n+2)-2^(n+2) EEEEA
ŞŹ§ˇéđŚľÜˇ
@AđłĚQťŽśÓÉăüˇéĆ
4^(n+2)+3^(n+2)-2^(n+2)
-5(4^(n+1)+3^(n+1)-2^(n+1))+6(4^n+3^n-2^n)
=2E4^n
ĆČ菧ľÄ¨č
ęűĹ
a1D=5,a2D=21Ĺ čźč@ÍyŃć2ĹŹ§ľÄ˘éŠçSÄĚĹŹ§ľÜˇ
ćÁÄńĚęĘđ
anD=4^n+3^n-2^n@EEEEEń
\\\\\\\\\\\\\\\\
âč2ĚęĘÍâč1Ěć¤É¤ÜŢĹŤČŠÁ˝ĚĹAČşĚć¤É͸Ĺ޾ܾ˝
QťŽĚźÓđ4^nĹčanD/4^n=bnDƨŤŽˇéĆ
bn+2D|(5/4) bn+1D+(8/3)
bnD=1/8Ab1D=5/4Ab2D=21/16EEEE@
bn+2D+żbn+1D+Ŕ=Á(bn+1D+żbnD+Ŕ)ƨĆ
bn+2D+(ż-Á)bn+1D-żÁbnD=Ŕ(Á-1)
@ĆĚWärđs˘
ż-Á=-5/4
-żÁ=3/8
Ŕ(Á-1)=1/8
ąęđđĆ
(A)@ ż=-3/4@Ŕ=-1/4@Á=1/2
(B)@ ż=-1/2@Ŕ=-1/2@Á=3/4
(A)Šç
bn+2D-(3/4)bn+1D-1/4=(1/2)E(bn+1D-(3/4)bnD-1/4)
c nD= bn+1D-(3/4)bnD-1/4 ƨĆ
c n+1D=(1/2) cnD
@c1D= b2D-(3/4)b1D-1/4=1/8
ąęÍ1/8öä1/2ĚäńČĚĹ
c nD=(1/8)E(1/2)^(n-1)
cđbÉŕÇľÄ
bn+1D-(3/4)bnD-1/4=(1/8)E(1/2)^(n-1)
łçÉbđaÉŕÇľÄ
an+1D/4^(n+1)-(3/4)anD/4^n-1/4=(1/8)E(1/2)^(n-1)
ŽˇéĆ
an+1D=3 anD+2^n+4^nEEE(A1)
(B)ŠçŻlÉvZˇéĆ
an+1D=2 anD+3^n+2E4^nEEE(B1)
(A1)Šç(B1)đÓXřŤŽˇéĆ
anD=4^n+3^n-2^n
ȨAâč1ĹQťŽĚźÓŠç2-3đřĆ
(an+2D-(n+2))-5(an+1D-(n+1))+6(anD-n)=2ĆČč
anD-n= bnƨĆ
bn+2D-5bn+1D+6bnD=2ĆŻéąĆŠç
ŻlĚč@ĹąŻť¤ĹˇBEEEEÖŤ
NO5 uX[N}v2/07 2038Ş óM @XV02/16
ÔÔÉlŚÄÜľ˝Şc
rÜĹĹŤ˝ŠĆv˘ÜˇĚĹc^^;c
âčPF(P)SC(Q)XC({Q)|T({P){U()Q|P
a(n+2)-3a(n+1)-2(a(n+1)-3a(n))=2n-1
(a(n+2)-3a(n+1))-2((a(n+1)-3a(n)))=2n-1
b(n)=a(n)-3a(n-1) ĆuĆc
b(n+2)-2b(n+1)=2n-1
b(n+2)+p(n+2)+q=2(b(n+1)+p(n+1)+q)
2p-p=2, 2q-q=-1
p=2, q=-1
b(n+2)+2(n+2)-1=2(b(n+1)+2(n+1)-1)
âčQF(P)TC(Q)QPC({Q)|T({P){U()QES^
ŻlÉlŚÄc
b(n+2)-4^(n+1)=2(b(n+1)-4^(n))
ĄĚĆąëąąÜĹšcOrz...
NO6 uńxĐŻŘv2/09 1115Ş óM @XV02/16
âčśÉ éAu޾ȪçvƢ¤ĚÍAuęĘđ޾Ȫçv
Ƣ¤ÓĄÉđ߾ܾ˝B
ľŠľÉÍęĘÍŢĹŤÜšńĹľ˝B
šĚĹAĄńĚęĘđąâčÍAŞigÁĢéęÖÉćé
đ@ĹđŤÜľ˝B
âč 1F
A(x)=°[n=1`](a[n]*x^n) ơéB
^Śçę˝QťŽ a[n+2]-5a[n+1]+6a[n]=2n-1
ĚźÓÉ x^(n+2) đŠŻÄC
a[n+2]*x^(n+2)-5a[n+1]*x^(n+2)+6a[n]*x^(n+2) = (2n-1)*x^(n+2)D
łçÉźÓĚ°[n=1`]@đlŚéąĆÉćÁÄC
°[n=1`](a[n+2]*x^(n+2)-5a[n+1]*x^(n+2)+6a[n]*x^(n+2))
=°[n=1`] ((2n-1)*x^(n+2) D
ąąĹC
(śÓ)
=°[n=1`](a[n+2]*x^(n+2))-5*x*°[n=1`](a[n+1]*x^(n+1))+6*x^2*°[n=1`](a[n]*x^n))
=(A(x)-a[1]*x-a[2]*x^2)-5*x*(A(x)-a[1]*x)+6*x^2*A(x)
=(A(x)-4*x-9*x^2)-5*x*(A(x)-4*x)+6*x^2*A(x)D
(EÓ)
=°[n=1`]((2n-1)*x^(n+2)
=2*x^3*°[n=1`](n*x^(n-1))-x^3*°[n=1`](x^(n-1))
=2*x^3*(d/dx)(1/(1-x))-x^3*(1/(1-x))
=2*x^3*(1/(1-x)^2)-x^3*(1/(1-x))
=(x^3+x^4)/((1-x)^2)D
ćÁÄC
(A(x)-4*x-9*x^2)-5*x*(A(x)-4*x)+6*x^2*A(x)=(x^3+x^4)/((1-x)^2)D
A(x)*(1-5*x+6*x^2)=(x^3+x^4)/((1-x)^2)+4*x-11*x^2D
A(x)=((x^3+x^4)/((1-x)^2)+4*x-11*x^2)/(1-5*x+6*x^2)D
=1/(1-x)^2+(2/3)*(1/(1-3*x))-5/3
=°[n=0`](n+1)*x^n + (2/3)*°[n=0`](3*x)^n - 5/3D
źÓĚx^nĚWđärˇéąĆÉćÁÄC
a[n] = (n+1)+(2/3)*3^n = 2*3^(n-1)+n+1 ()D
âč 2F
A(x)=°[n=1`](a[n]*x^n) ơéB
^Śçę˝QťŽ a[n+2]-5*a[n+1]+6*a[n]=2*4^n ćčA
(A(x)-5*x-21*x^2)-5*x*(A(x)-5*x)+6*x^2*A(x)
=2*°[n=1`](4^n*x^(n+2))
=2*x^2*°[n=1`](4*x)^n
=2*x^2*(4*x)/(1-4*x)D
A(x)*(1-5*x+6*x^2)=8*x^3/(1-4*x)+5*x-4*x^2D
A(x)
=(8*x^3/(1-4*x)+5*x-4*x^2)/(1-5*x+6*x^2)
=1/(1-4*x)+1/(1-3*x)-1/(1-2*x)-1
=°[n=0`](4*x)^n + °[n=0`](3*x)^n - °[n=0`](2*x)^n - 1D
źÓĚx^nĚWđärˇéąĆÉćÁÄC
a[n] = 4^n + 3^n - 2^n ()D
ĚŹęŠç
ążçŞlŚÄ˘˝ĚÍŚĚ`đ\zľÄŠç@
âčPĹÍA2^n+B3^n+Cn+D
âčQĹÍA2^n+B3^n+C4^n
ĆľÄAăÍúđŠçWđßéű@šB
@@@@@@@@@@@
FłńAâčâżâÉŚÄžł˘BęĹŕ\˘ÜšńŠçAđĆyl[đYŚÄA[ĹÁÄžł˘BŇÁĢܡB