•˝Ź‚Q‚U”N‚QŒŽ‚P‚U“ú

[—Ź‚ꐯ]

@@@@@‘ć30‚Q‰ń”Šw“I‚ȉž•ĺ‰đ“š

@@@@@@ƒ‰đ“š•ĺWŠúŠÔF1ŒŽ19“ú`2ŒŽ16“ú„

m“ÁŽę‚Č‘Q‰ťŽŽn

ŽŸ‚̗אڎO€ŠÔ‚Ě‘Q‰ťŽŽ‚Š‚ç—ސ„‚ľ‚Č‚Ş‚çA”—ń‚Ěˆę”ʍ€‚đ“ą‚˘‚Ä‚­‚ž‚ł‚˘B

–â‘č‚PF‚‚P‚SC‚‚Q‚XC‚‚Ž{‚Q|‚T‚‚Ž{‚P{‚U‚‚Ž‚Q‚Ž|‚P

–â‘č‚QF‚‚P‚TC‚‚Q‚Q‚PC‚‚Ž{‚Q|‚T‚‚Ž{‚P{‚U‚‚Ž‚QE‚S‚Ž

NO1uuchinyanv  01/19 15Žž31•Ş@ŽóM

uuchinyanv  01/20 11Žž53•Ş@ŽóM  XV02/16

—ސ„‚ÍČ—Ş‚ľC‚˘‚Á‚Ť‚É‰đ‚˘‚Ä‚ľ‚Ü‚˘‚Ü‚ľ‚傤B

(‰đ–@1)

–â‘č‚PFa(1) = 4Ca(2) = 9Ca(n+2) - 5a(n+1) + 6a(n) = 2n - 1

a(n+2) - 5a(n+1) + 6a(n) = 2n - 1

a(n+3) - 5a(n+2) + 6a(n+1) = 2(n+1) - 1

(a(n+3) - a(n+2)) - 5(a(n+2) - a(n+1)) + 6(a(n+1) - a(n)) = 2

(a(n+3) - a(n+2) - 1) - 5(a(n+2) - a(n+1) - 1) + 6(a(n+1) - a(n) - 1) = 0

‚ą‚ą‚ŁCb(n) = a(n+1) - a(n) - 1 ‚Ć‚¨‚­‚ƁC

b(n+2) - 5b(n+1) + 6b(n) = 0

‚ł‚ç‚ɁCx^2 - 5x + 6 = 0 ‚̉đ x = 2, 3 ‚đŽg‚Á‚Ä•ĎŒ`‚ˇ‚é‚ƁC

b(n+2) - 3b(n+1) = 2(b(n+1) - 3b(n)) = c = 2^n * (b(2) - 3b(1))

b(n+2) - 2b(n+1) = 3(b(n+1) - 2b(n)) = c = 3^n * (b(2) - 2b(1))

‚ą‚ą‚ŁCa(1) = 4, a(2) = 9, a(3) = 5a(2) - 6a(1) + (2 * 1 - 1) = 22C‚ć‚čC

b(2) = a(3) - a(2) - 1 = 22 - 9 - 1 = 12

b(1) = a(2) - a(1) - 1 = 9 - 4 - 1 = 4

‚Ȃ̂ŁC

b(n+2) - 3b(n+1) = 2^n * (12 - 3 * 4) = 0

b(n+2) - 2b(n+1) = 3^n * (12 - 2 * 4) = 4 * 3^n

b(n+1) - 3b(n) = 0

b(n+1) - 2b(n) = 4 * 3^(n-1)

b(n) = 4 * 3^(n-1)

‚ť‚ą‚ŁC

a(n+1) - a(n) - 1 = b(n) = 4 * 3^(n-1)

a(n+1) - a(n) = 4 * 3^(n-1) + 1

a(n) = ƒ°[k=1,n-1]{4 * 3^(k-1) + 1} + a(1)

= 4 * (3^(n-1) - 1)/(3 - 1) + (n - 1) + 4

= 2 * 3^(n-1) + n + 1

a(n) = 2 * 3^(n-1) + n + 1

‚É‚Č‚č‚Ü‚ˇB

–â‘č‚QFa(1) = 5Ca(2) = 21Ca(n+2) - 5a(n+1) + 6a(n) = 2 * 4^n

a(n+2) - 5a(n+1) + 6a(n) = 2 * 4^n

a(n+2)/4^n - 5a(n+1)/4^n + 6a(n)/4^n = 2

16(a(n+2)/4^(n+2)) - 20(a(n+1)/4^(n+1)) + 6(a(n)/4^n) = 2

8(a(n+2)/4^(n+2) - 1) - 10(a(n+1)/4^(n+1) - 1) + 3(a(n)/4^n - 1) = 0

‚ą‚ą‚ŁCb(n) = a(n)/4^n - 1 ‚Ć‚¨‚­‚ƁC

8b(n+2) - 10b(n+1) + 3b(n) = 0

‚ł‚ç‚ɁC8x^2 - 10x + 3 = 0 ‚̉đ x = 1/2, 3/4 ‚đŽg‚Á‚Ä•ĎŒ`‚ˇ‚é‚ƁC

b(n+2) - (3/4)b(n+1) = (1/2)(b(n+1) - (3/4)b(n)) = c = (1/2)^n * (b(2) - (3/4)b(1))

b(n+2) - (1/2)b(n+1) = (3/4)(b(n+1) - (1/2)b(n)) = c = (3/4)^n * (b(2) - (1/2)b(1))

‚ą‚ą‚ŁCa(1) = 5, a(2) = 21C‚ć‚čC

b(2) = a(2)/4^2 - 1 = 21/16 - 1 = 5/16

b(1) = a(1)/4^1 - 1 = 5/4 - 1 = 1/4

‚Ȃ̂ŁC

b(n+2) - (3/4)b(n+1) = (1/2)^n * (5/16 - (3/4)(1/4)) = 1/8 * (1/2)^n

b(n+2) - (1/2)b(n+1) = (3/4)^n * (5/16 - (1/2)(1/4)) = 3/16 * (3/4)^n

b(n+1) - (3/4)b(n) = 1/8 * (1/2)^(n-1)

b(n+1) - (1/2)b(n) = 3/16 * (3/4)^(n-1)

b(n) = (3/4)^n - (1/2)^n

‚ť‚ą‚ŁC

a(n)/4^n - 1 = b(n) = (3/4)^n - (1/2)^n

a(n) = 4^n + 3^n - 2^n

‚É‚Č‚č‚Ü‚ˇB

 (‰đ–@2)

ˆę”ʂɁC

a(n+2) - pa(n+1) + qa(n) = f(n)

‚É‚¨‚˘‚āCa(n) ‚đˆę”ʉđCs(n) ‚đ‰˝‚ç‚Š‚Ě•ű–@‚ĹŒŠ‚‚Ż‚˝“ÁŽę‚ȉđC“ÁŽę‰đC‚Ć‚ˇ‚é‚ƁC

a(n+2) - pa(n+1) + qa(n) = f(n)

s(n+2) - ps(n+1) + qs(n) = f(n)

(a(n+2) - pa(n+1) + qa(n)) - (s(n+2) - ps(n+1) + qs(n)) = f(n) - f(n) = 0

(a(n+2) - s(n+2)) - p(a(n+1) - s(n+1)) + q(a(n) - s(n)) = 0

c(n) = a(n) - s(n) ‚Ć‚¨‚­‚ƁC

c(n+2) - pc(n+1) + qc(n) = 0

‚‚܂čCc(n) ‚ÍŒł‚Ě‘Q‰ťŽŽ‚̉E•Ó‚đ 0 ‚Ć‚ľ‚˝‘Q‰ťŽŽ‚̉đ‚Ĺ‚ˇB

‚ą‚Ě‚ą‚Ć‚ć‚čC

a(n) = s(n) + c(n)

‚Ə‘‚­‚ą‚Ć‚Ş‚Ĺ‚Ť‚Ü‚ˇB

‚ą‚Ě‚ą‚Ć‚đ“Ľ‚Ü‚Ś‚é‚ƁCŽŸ‚̂悤‚É‰đ‚­‚ą‚Ć‚Ş‚Ĺ‚Ť‚Ü‚ˇB

–â‘č‚PFa(1) = 4Ca(2) = 9Ca(n+2) - 5a(n+1) + 6a(n) = 2n - 1

‰E•Ó‚đ 0 ‚É‚ľ‚˝‘Q‰ťŽŽ‚́C

c(n+2) - 5c(n+1) + 6c(n) = 0

‚ŁC‚ą‚ę‚Í(‰đ–@1)‚Ě b(n) ‚Ć“Ż—l‚É‚ľ‚ÄŽŽ•ĎŒ`‚ľCˆę”ʂɁCaCb ‚đ’萔‚Ć‚ľ‚āC

c(n) = a * 2^n + b * 3^n

‚Ə‘‚­‚ą‚Ć‚Ş‚Ĺ‚Ť‚Ü‚ˇB

ˆę•ű‚ŁC“ÁŽę‰đ‚Ĺ‚ˇ‚ށCs(n) = pn + q ‚Ć‚¨‚­‚Ć

(p(n+2) + q) - 5(p(n+1) + q) + 6(pn + q)) = 2n - 1

2pn + (- 3p + 2q) = 2n - 1

p = 1, q = 1

s(n) = n + 1

‚Ć‹‚Ü‚č‚Ü‚ˇB

‚ť‚ą‚ŁC

a(n) = s(n) + c(n) = (n + 1) + (a * 2^n + b * 3^n)

‚ą‚ę‚ć‚čC

a(1) = (1 + 1) + (a * 2^1 + b * 3^1) = 2 + 2a + 3b = 4

a(2) = (2 + 1) + (a * 2^2 + b * 3^2) = 3 + 4a + 9b = 9

a = 0, b = 2/3

a(n) = (n + 1) + (0 * 2^n + 2/3 * 3^n) = 2 * 3^(n-1) + n + 1

‚É‚Č‚č‚Ü‚ˇB

–â‘č‚QFa(1) = 5Ca(2) = 21Ca(n+2) - 5a(n+1) + 6a(n) = 2 * 4^n

‰E•Ó‚đ 0 ‚É‚ľ‚˝‘Q‰ťŽŽ‚́C

c(n+2) - 5c(n+1) + 6c(n) = 0

‚ŁC‚ą‚ę‚́C“Ż—l‚É‚ľ‚āC

c(n) = a * 2^n + b * 3^n

‚Ə‘‚­‚ą‚Ć‚Ş‚Ĺ‚Ť‚Ü‚ˇB

ˆę•ű‚ŁC“ÁŽę‰đ‚Ĺ‚ˇ‚ށCs(n) = p * 4^n ‚Ć‚¨‚­‚Ć

(p * 4^(n+2)) - 5(p * 4^(n+1)) + 6(p * 4^n) = 2 * 4^n

2p  = 2

p = 1

s(n) = 4^n

‚Ć‹‚Ü‚č‚Ü‚ˇB

‚ť‚ą‚ŁC

a(n) = s(n) + c(n) = 4^n + (a * 2^n + b * 3^n)

‚ą‚ę‚ć‚čC

a(1) = 4^1 + (a * 2^1 + b * 3^1) = 4 + 2a + 3b = 5

a(2) = 4^2 + (a * 2^2 + b * 3^2) = 16 + 4a + 9b = 21

a = -1, b = 1

a(n) = 4^n + ((-1) * 2^n + 1 * 3^n) = 4^n + 3^n - 2^n

‚É‚Č‚č‚Ü‚ˇB

 (Š´‘z)

”ńüŒ`‚Ě‘Q‰ťŽŽ‚Ĺ‚ˇ‚ˁB‰ŒŠ‚ł́C—ސ„‚ˇ‚é‚É‚ľ‚Ä‚ŕ“ď‚ľ‚˘‚Š‚ŕ’m‚ę‚Ü‚š‚ńB

‚˝‚žC‚Í‚é‚ŠĚ‚É‚Č‚č‚Ü‚ˇ‚ށCŽ„‚ލ‚Zś‚̍ ‚́C(‰đ–@1)‚̂悤‚ÉŽŽ•ĎŒ`‚đ‹ěŽg‚ľ‚Ä‰đ‚˘‚Ä‚˘‚˝‹C‚Ş‚ľ‚Ü‚ˇB

‚ą‚ę‚͉E•Ó‚ĚŽŽ‚ĚŒ`‚Ɉˑś‚ľ‚čH•v‚ˇ‚é•K—v‚Ş‚ ‚č‚Ü‚ˇ‚ށC‚ť‚ę‚Ĺ‚ŕ‚Š‚Ȃ艞—p‚ÍŒř‚Ť‚Ü‚ˇB

ˆę•űC(‰đ–@2)‚̍ŏ‰‚̍l‚Ś•ű‚Í”ńí‚Ɉę”Ę“I‚ŁCüŒ`‚Ěˆę”ʉđ‚Ć”ńüŒ`‚Ě“ÁŽę‰đ‚Š‚ç\Ź‚Ĺ‚Ť‚Ü‚ˇB

‚ŕ‚Á‚Ć‚ŕC“ÁŽę‰đ‚đ‹‚ß‚é‚Ě‚Í“Ż—l‚ɉE•Ó‚ĚŽŽ‚ĚŒ`‚Ɉˑś‚ľ‚čH•v‚Ş•K—v‚Ĺ‚ˇ‚ށB

(‰đ–@2)‚ĚŽč–@‚đ’m‚Á‚˝‚Ě‚Í‘ĺŠw‚É“ü‚Á‚Ä‚Š‚ç‚Ĺ‚ˇB

‚ľ‚Š‚ŕC”Šw‚Ĺ‚Í‚Č‚­C•¨—‚Ě—ÍŠw‚ĹŽžŠÔ‚Ɉˑś‚ľ‚˝‹­§—Í‚Ě‚ ‚éƒVƒXƒeƒ€‚Ě“Žě‚đ‹‚ß‚é–â‘č‚Ĺ‚ľ‚˝B

‚ľ‚˝‚Ş‚Á‚āC‘Q‰ťŽŽ‚Ĺ‚Í‚Č‚­C‰^“Ž•ű’öŽŽ = ”÷•Ş•ű’öŽŽ ‚Ĺ‚ľ‚˝B

–{‚ɍڂÁ‚Ä‚˘‚˝‚ą‚Ě•ű–@‚É‚˘‚˝‚­Š´“Ž‚ľ‚˝Žv‚˘‚Ş‚ ‚č‚Ü‚ˇB

‘Q‰ťŽŽ‚Í‚ ‚éˆÓ–Ą‚ōˇ•Ş•ű’öŽŽ‚Ć“™‰ż‚ŁCˇ•Ş•ű’öŽŽ‚Í”÷•Ş•ű’öŽŽ‚̐eĘ‚Ȃ̂ŁC

‘Q‰ťŽŽ‚Ĺ‚ŕ‚ť‚Ě‚Ü‚ÜŽg‚Ś‚Ü‚ˇ‚ˁB

‚ť‚ń‚Č‚ą‚Ć‚đ‰ů‚Š‚ľ‚­Žv‚˘o‚ľ‚Č‚Ş‚ç‰đ‚Ť‚Ü‚ľ‚˝B

NO2u•l“c–ž–¤v@01/21 16Žž44•Ş@ŽóM  XV02/16

–â‘č‚PD
@@‚‚Ž{‚Q|‚T‚‚Ž{‚P{‚U‚‚Ž‚Q‚Ž|‚Pccc(1)
‚Š‚çC
@@‚‚Ž{‚Q|‚Q‚‚Ž{‚P‚R(‚‚Ž{‚P|‚Q‚‚Ž){‚Q‚Ž|‚P
@‚‚‚Ž‚‚Ž{‚P|‚Q‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚‚‚Ž{‚P‚R‚‚‚Ž{‚Q‚Ž|‚P
@@ˆ‚‚‚Ž{‚P^‚R‚Ž{‚P‚‚‚Ž^‚R‚Ž{(‚Q‚Ž|‚P)^‚R‚Ž{‚P
@‚ƒ‚Ž‚‚‚Ž^‚R‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚ƒ‚Ž{‚P‚ƒ‚Ž{(‚Q‚Ž|‚P)^‚R‚Ž{‚P
@‚Ž†‚Q‚Ě‚Ć‚ŤC
@@‚ƒ‚Ž‚ƒ‚P{ƒ°‚P…‚‹…‚Ž|‚P(‚Q‚‹|‚P)^‚R‚‹{‚Pccc(2)
@‚ą‚ą‚ŁC
@@‚ƒ‚P‚‚‚P^‚R(‚‚Q|‚Q‚‚P)^‚R(‚X|‚QE‚S)^‚R‚P^‚R
@‚r‚Žƒ°‚P…‚‹…‚Ž(‚Q‚‹|‚P)^‚R‚‹{‚Pi‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚r‚Ž‚P^‚R‚Q{‚R^‚R‚R{‚T^‚R‚S{ccc{(‚Q‚Ž|‚P)^‚R‚Ž{‚Pccc(3)
@@ˆ‚P^‚RE‚r‚Ž‚P^‚R‚R{‚R^‚R‚S{‚T^‚R‚T{ccc{(‚Q‚Ž|‚P)^‚R‚Ž{‚Qccc(4)
@(3)|(4)‚Š‚çC
@@‚Q^‚RE‚r‚Ž‚P^‚R‚Q{‚Q^‚R‚R{‚Q^‚R‚S{ccc{‚Q^‚R‚Ž{‚P|(‚Q‚Ž|‚P)^‚R‚Ž{‚Q
@@@@@@@‚Q^‚R‚QE(‚P{‚P^‚R{‚P^‚R‚Q{ccc{‚P^‚R‚Ž|‚P)|‚P^‚R‚Q|(‚Q‚Ž|‚P)^‚R‚Ž{‚Q
@@@@@@@‚Q^‚XE{‚P|(‚P^‚R)‚Ž}^(‚P|‚P^‚R)|‚P^‚X|(‚Q‚Ž|‚P)^‚R‚Ž{‚Q
@@@@@@@‚P^‚RE(‚P|‚P^‚R‚Ž)|‚P^‚X|(‚Q‚Ž|‚P)^‚R‚Ž{‚Q
@@@@@@@‚Q^‚X|‚P^‚R‚Ž{‚P|(‚Q‚Ž|‚P)^‚R‚Ž{‚Q
@@@@@@@{‚QE‚R‚Ž|‚R|(‚Q‚Ž|‚P)}^‚R‚Ž{‚Q
@@@@@@@(‚QE‚R‚Ž|‚Q‚Ž|‚Q)^‚R‚Ž{‚Q
@@ˆ‚r‚Ž‚R^‚QE(‚QE‚R‚Ž|‚Q‚Ž|‚Q)^‚R‚Ž{‚Q
@@@@(‚R‚Ž|‚Ž|‚P)^‚R‚Ž{‚P
@(2)‚Š‚çC
@@‚ƒ‚Ž‚P^‚R{‚r‚Ž|‚P
@@@@‚P^‚R{{‚R‚Ž|‚P|(‚Ž|‚P)|‚P}^‚R‚Ž
@@@@(‚R‚Ž|‚P{‚R‚Ž|‚P|‚Ž)^‚R‚Ž
@@@@(‚QE‚R‚Ž|‚P|‚Ž)^‚R‚Ž
@‚ą‚ę‚́C‚Ž‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@@ˆ‚ƒ‚Ž(‚QE‚R‚Ž|‚P|‚Ž)^‚R‚Ž‚‚‚Ž^‚R‚Ž
@@ˆ‚‚‚Ž‚QE‚R‚Ž|‚P|‚Ž
@@ˆ‚‚Ž{‚P|‚Q‚‚Ž‚QE‚R‚Ž|‚P|‚Žccc(5)

@(1)‚Š‚çC
@@‚‚Ž{‚Q|‚R‚‚Ž{‚P‚Q(‚‚Ž{‚P|‚R‚‚Ž){‚Q‚Ž|‚P
@‚„‚Ž‚‚Ž{‚P|‚R‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚„‚Ž{‚P‚Q‚„‚Ž{‚Q‚Ž|‚P
@@ˆ‚„‚Ž{‚P^‚Q‚Ž{‚P‚„‚Ž^‚Q‚Ž{(‚Q‚Ž|‚P)^‚Q‚Ž{‚P
@‚…‚Ž‚„‚Ž^‚Q‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚…‚Ž{‚P‚…‚Ž{(‚Q‚Ž|‚P)^‚Q‚Ž{‚P
@‚Ž†‚Q‚Ě‚Ć‚ŤC
@@‚…‚Ž‚…‚P{ƒ°‚P…‚‹…‚Ž|‚P(‚Q‚‹|‚P)^‚Q‚‹{‚Pccc(6)
@‚ą‚ą‚ŁC
@@‚…‚P‚„‚P^‚Q(‚‚Q|‚R‚‚P)^‚Q(‚X|‚RE‚S)^‚Q|‚R^‚Q
@‚s‚Žƒ°‚P…‚‹…‚Ž(‚Q‚‹|‚P)^‚Q‚‹{‚Pi‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚s‚Ž‚P^‚Q‚Q{‚R^‚Q‚R{‚T^‚Q‚S{ccc{(‚Q‚Ž|‚P)^‚Q‚Ž{‚Pccc(7)
@@ˆ‚P^‚QE‚s‚Ž‚P^‚Q‚R{‚R^‚Q‚S{‚T^‚Q‚T{ccc{(‚Q‚Ž|‚P)^‚Q‚Ž{‚Qccc(8)
@(7)|(8)‚Š‚çC
@@‚P^‚QE‚s‚Ž‚P^‚Q‚Q{‚Q^‚Q‚R{‚Q^‚Q‚S{ccc{‚Q^‚Q‚Ž{‚P|(‚Q‚Ž|‚P)^‚Q‚Ž{‚Q
@@@@@@@(‚P^‚Q{‚P^‚Q‚Q{‚P^‚Q‚R{ccc{‚P^‚Q‚Ž)|‚P^‚Q‚Q|(‚Q‚Ž|‚P)^‚Q‚Ž{‚Q
@@@@@@@‚P^‚QE{‚P|(‚P^‚Q)‚Ž}^(‚P|‚P^‚Q)|‚P^‚S|(‚Q‚Ž|‚P)^‚Q‚Ž{‚Q
@@@@@@@(‚P|‚P^‚Q‚Ž)|‚P^‚S|(‚Q‚Ž|‚P)^‚Q‚Ž{‚Q
@@@@@@@‚R^‚S|‚P^‚Q‚Ž|(‚Q‚Ž|‚P)^‚Q‚Ž{‚Q
@@@@@@@{‚RE‚Q‚Ž|‚S|(‚Q‚Ž|‚P)}^‚Q‚Ž{‚Q
@@@@@@@(‚RE‚Q‚Ž|‚Q‚Ž|‚R)^‚Q‚Ž{‚Q
@@ˆ‚s‚Ž(‚RE‚Q‚Ž|‚Q‚Ž|‚R)^‚Q‚Ž{‚P
@(6)‚Š‚çC
@@‚…‚Ž|‚R^‚Q{‚s‚Ž|‚P
@@@|‚R^‚Q{{‚RE‚Q‚Ž|‚P|‚Q(‚Ž|‚P)|‚R}^‚Q‚Ž
@@@(|‚RE‚Q‚Ž|‚P{‚RE‚Q‚Ž|‚P|‚Q‚Ž{‚Q|‚R)^‚Q‚Ž
@@@(|‚Q‚Ž|‚P)^‚Q‚Ž
@‚ą‚ę‚́C‚Ž‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@@ˆ‚…‚Ž(|‚Q‚Ž|‚P)^‚Q‚Ž‚„‚Ž^‚Q‚Ž
@@ˆ‚„‚Ž|‚Q‚Ž|‚P
@@ˆ‚‚Ž{‚P|‚R‚‚Ž|‚Q‚Ž|‚Pccc(9)

@(5)|(9)‚Š‚çC
@@‚‚Ž(‚QE‚R‚Ž|‚P|‚Ž){(‚Q‚Ž{‚P)
@@@‚QE‚R‚Ž|‚P{‚Ž{‚Pccci“šj

i•Ę‰đj
@@‚‚Ž{‚Q|‚Q‚‚Ž{‚P‚R(‚‚Ž{‚P|‚Q‚‚Ž){‚Q‚Ž|‚P
@‚‚‚Ž‚‚Ž{‚P|‚Q‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚‚‚Ž{‚P‚R‚‚‚Ž{‚Q‚Ž|‚P
@‚‚‚Ž‚E‚R‚Ž{‚‘‚Ž{‚’i‚Ž‚PC‚QC‚RCcccC‚C‚‘C‚’‚͒萔j‚Ć‚ˇ‚é‚ƁC
@@‚E‚R‚Ž{‚P{‚‘(‚Ž{‚P){‚’‚R(‚E‚R‚Ž{‚‘‚Ž{‚’){‚Q‚Ž|‚P
@@ˆ‚‘‚Ž{(‚‘{‚’)(‚R‚‘{‚Q)‚Ž{(‚R‚’|‚P)
@‚Ž‚̍P“™ŽŽ‚Ȃ̂ŁC
@@‚‘‚R‚‘{‚Qccc(2)
@@‚‘{‚’‚R‚’|‚Pccc(3)
@(2)‚Š‚çC|‚Q‚‘‚Q@@@ˆ‚‘|‚P
@(3)‚Š‚çC|‚P{‚’‚R‚’|‚P@@@ˆ‚’‚O
@@ˆ‚‚‚Ž‚E‚R‚Ž|‚Žccc(4)
@‚‚‚P‚‚Q|‚QE‚‚P‚P‚Š‚çC(4)‚É‚Ž‚P‚đ‘ă“ü‚ˇ‚é‚ƁC
@@‚‚‚P‚R‚|‚P‚P@@@ˆ‚‚Q^‚R
@(4)‚Š‚çC‚‚‚Ž‚‚Ž{‚P|‚Q‚‚Ž‚QE‚R‚Ž|‚P|‚Ž
iŒă‚Ő”Šw“I‹A”[–@‚ĹŘ–ž‚ˇ‚éj

i•Ę‰đ‚ť‚Ě‚Qj(1)‚Š‚çC
@@‚‚R‚T‚‚Q|‚U‚‚P{‚P‚TE‚X|‚UE‚S{‚P‚S‚T|‚Q‚S{‚P‚Q‚Q
@@‚‚S‚T‚‚R|‚U‚‚Q{‚R‚TE‚Q‚Q|‚UE‚X{‚R‚P‚P‚O|‚T‚S{‚R‚T‚X
@@‚‚T‚T‚‚S|‚U‚‚R{‚T‚TE‚T‚X|‚UE‚Q‚Q{‚T‚Q‚X‚T|‚P‚R‚Q{‚T‚P‚U‚W
@‚‚‚Ž‚‚Ž{‚P|‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚‚‚P‚‚Q|‚‚P‚X|‚S‚T
@@‚‚‚Q‚‚R|‚‚Q‚Q‚Q|‚X‚P‚R
@@‚‚‚R‚‚S|‚‚R‚T‚X|‚Q‚Q‚R‚V
@@‚‚‚S‚‚T|‚‚S‚P‚U‚W|‚T‚X‚P‚O‚X
@‚ƒ‚Ž‚‚‚Ž{‚P|‚‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚ƒ‚P‚‚‚Q|‚‚‚P‚P‚R|‚T‚W
@@‚ƒ‚Q‚‚‚R|‚‚‚Q‚R‚V|‚P‚R‚Q‚S
@@‚ƒ‚R‚‚‚S|‚‚‚R‚P‚O‚X|‚R‚V‚V‚Q
@ŒĚ‚ɐ”—ńo‚ƒ‚Žp‚́C‰€‚WCŒö”ä‚R‚Ě“™”䐔—ń‚Ĺ‚ ‚é‚Ɨސ„‚Ĺ‚Ť‚éD‚ą‚Ě‚Ć‚ŤC
@@‚ƒ‚Ž‚WE‚R‚Ž|‚P‚‚‚Ž{‚P|‚‚‚Ž
@‚Ž†‚Q‚Ě‚Ć‚ŤC
@@‚‚‚Ž‚‚‚P{ƒ°‚P…‚‹…‚Ž|‚P‚WE‚R‚‹|‚P
@@@‚T{‚WE(‚R‚Ž|‚P|‚P)^(‚R|‚P)
@@@‚T{‚S(‚R‚Ž|‚P|‚P)
@@@‚SE‚R‚Ž|‚P{‚P
@‚ą‚ę‚Í‚Ž‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@@ˆ‚‚‚Ž‚SE‚R‚Ž|‚P{‚P‚‚Ž{‚P|‚‚Ž
@‚Ž†‚Q‚Ě‚Ć‚ŤC
@@‚‚Ž‚‚P{ƒ°‚P…‚‹…‚Ž|‚P(‚SE‚R‚‹|‚P{‚P)
@@@‚S{‚SE(‚R‚Ž|‚P|‚P)^(‚R|‚P){(‚Ž|‚P)
@@@‚QE‚R‚Ž|‚P{‚Ž{‚P
@‚ą‚ę‚Í‚Ž‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@‚ą‚ę‚𐔊w“I‹A”[–@‚ĹŘ–ž‚ˇ‚éD
@‚Ž‚PC‚Ž‚Q‚Ě‚Ć‚ŤC–ž‚ç‚Š‚ɐŹ—§‚ˇ‚éD
@‚Ž‚‹C‚Ž‚‹{‚Pi‚‹†‚Pj‚Ě‚Ć‚ŤCŹ‚č—§‚‚Ɖź’股‚é‚ƁC
@@‚‚‹‚QE‚R‚‹|‚P{‚‹{‚PC‚‚‹{‚P‚QE‚R‚‹{‚‹{‚Q
@(1)‚Š‚çC
@@‚‚‹{‚Q‚T‚‚‹{‚P|‚U‚‚‹{(‚Q‚‹|‚P)
@@@@‚T(‚QE‚R‚‹{‚‹{‚Q)|‚U(‚QE‚R‚‹|‚P{‚‹{‚P){‚Q‚‹|‚P
@@@@‚P‚OE‚R‚‹{‚T‚‹{‚P‚O|‚SE‚R‚‹|‚U‚‹|‚U{‚Q‚‹|‚P
@@@@‚UE‚R‚‹{‚‹{‚R
@@@@‚QE‚R‚‹{‚P{‚‹{‚R
@ŒĚ‚É‚Ž‚‹{‚Q‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@ŒĚ‚É‚ˇ‚ׂĂ̎Š‘R”‚Ž‚ɂ‚˘‚āC
@@‚‚Ž‚QE‚R‚Ž|‚P{‚Ž{‚Pccci“šj

–â‘č‚QD
@@‚‚Ž{‚Q|‚T‚‚Ž{‚P{‚U‚‚Ž‚QE‚S‚Žccc(1)
‚Š‚çC
@@‚‚Ž{‚Q|‚Q‚‚Ž{‚P‚R(‚‚Ž{‚P|‚Q‚‚Ž){‚QE‚S‚Ž
@‚‚‚Ž‚‚Ž{‚P|‚Q‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚‚‚Ž{‚P‚R‚‚‚Ž{‚QE‚S‚Ž
@@ˆ‚‚‚Ž{‚P^‚S‚Ž{‚P‚R^‚SE‚‚‚Ž^‚S‚Ž{‚P^‚Q
@‚ƒ‚Ž‚‚‚Ž^‚S‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚ƒ‚Ž{‚P‚R^‚SE‚ƒ‚Ž{‚P^‚Q
@@ˆ‚ƒ‚Ž{‚P|‚Q‚R^‚SE‚ƒ‚Ž|‚R^‚Q‚R^‚SE(‚ƒ‚Ž|‚Q)
@‚„‚Ž‚ƒ‚Ž|‚Qi‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚„‚Ž{‚P‚R^‚SE‚„‚Ž
@ŒĚ‚ɐ”—ńo‚„‚Žp‚́C‰€
@@‚„‚P‚ƒ‚P|‚Q‚‚‚P^‚S|‚Q(‚‚Q|‚Q‚‚P)^‚S|‚Q(‚Q‚P|‚QE‚T)^‚S|‚Q‚R^‚S
Œö”ä‚R^‚S‚Ě“™”䐔—ń‚Ĺ‚ ‚é‚̂ŁC
@@‚„‚Ž‚R^‚SE(‚R^‚S)‚Ž|‚P‚R‚Ž^‚S‚Ž‚ƒ‚Ž|‚Q
@@ˆ‚ƒ‚Ž‚Q{‚R‚Ž^‚S‚Ž‚‚‚Ž^‚S‚Ž
@@ˆ‚‚‚Ž‚QE‚S‚Ž{‚R‚Ž
@@ˆ‚‚Ž{‚P|‚Q‚‚Ž‚QE‚S‚Ž{‚R‚Žccc(2)

@(1)‚Š‚çC
@@‚‚Ž{‚Q|‚R‚‚Ž{‚P‚Q(‚‚Ž{‚P|‚R‚‚Ž){‚QE‚S‚Ž
@‚…‚Ž‚‚Ž{‚P|‚R‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚…‚Ž{‚P‚Q‚…‚Ž{‚QE‚S‚Ž
@@ˆ‚…‚Ž{‚P^‚S‚Ž{‚P‚P^‚QE‚‚‚Ž^‚S‚Ž{‚P^‚Q
@‚†‚Ž‚…‚Ž^‚S‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚†‚Ž{‚P‚P^‚QE‚†‚Ž{‚P^‚Q
@@ˆ‚†‚Ž{‚P|‚P‚P^‚QE‚†‚Ž|‚P^‚Q‚P^‚QE(‚†‚Ž|‚P)
@‚‡‚Ž‚†‚Ž|‚Pi‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚‡‚Ž{‚P‚P^‚QE‚‡‚Ž
@ŒĚ‚ɐ”—ńo‚‡‚Žp‚́C‰€
@@‚‡‚P‚†‚P|‚P‚…‚P^‚S|‚P(‚‚Q|‚R‚‚P)^‚S|‚P(‚Q‚P|‚RE‚T)^‚S|‚P‚P^‚Q
Œö”ä‚P^‚Q‚Ě“™”䐔—ń‚Ĺ‚ ‚é‚̂ŁC
@@‚‡‚Ž‚P^‚QE(‚P^‚Q)‚Ž|‚P‚P^‚Q‚Ž‚†‚Ž|‚P
@@ˆ‚†‚Ž‚P{‚P^‚Q‚Ž‚…‚Ž^‚S‚Ž
@@ˆ‚…‚Ž‚S‚Ž{‚S‚Ž^‚Q‚Ž
@@ˆ‚‚Ž{‚P|‚R‚‚Ž‚S‚Ž{‚Q‚Žccc(3)

@(2)|(3)‚Š‚çC
@@‚‚Ž‚S‚Ž{‚R‚Ž|‚Q‚Žccci“šj

u•l“c–ž–¤v@01/22 17Žž05•Ş@ŽóM  XV02/16

–â‘č‚PD
i•Ę‰đj(5)@‚‚Ž{‚P|‚Q‚‚Ž‚QE‚R‚Ž|‚P|‚Ž
‚đŽg‚킸C
@@(9)@‚‚Ž{‚P|‚R‚‚Ž|‚Q‚Ž|‚P
‚Ě‚Ý‚đŽg‚¤‰đ–@

@@‚‚Ž{‚P|‚R‚‚Ž|‚Q‚Ž|‚Pccc(9)
‚Š‚çC
@@‚‚Ž{‚P^‚R‚Ž{‚P|‚‚Ž^‚R‚Ž|(‚Q‚Ž{‚P)^‚R‚Ž{‚P
@‚ą‚ą‚ŁC
@@‚‚‚Ž‚‚Ž^‚R‚Ži‚Ž‚PC‚QC‚RCcccj
‚Ć‚ˇ‚é‚ƁC
@@‚‚‚Ž{‚P|‚‚‚Ž|(‚Q‚Ž{‚P)^‚R‚Ž{‚P
@‚Ž†‚Q‚Ě‚Ć‚ŤC
@@‚‚‚Ž‚‚‚P|ƒ°‚P…‚‹…‚Ž|‚P(‚Q‚‹{‚P)^‚R‚‹{‚P
@‚ą‚ą‚ŁC
@@‚‚‚P‚‚P^‚R‚S^‚R
@‚Ü‚˝C
@@‚r‚Žƒ°‚P…‚‹…‚Ž(‚Q‚‹{‚P)^‚R‚‹{‚P
@@@‚R^‚R‚Q{‚T^‚R‚R{‚V^‚R‚S{ccc{(‚Q‚Ž{‚P)^‚R‚Ž{‚P
‚Ć‚ˇ‚é‚ƁC
@@‚P^‚RE‚r‚Ž‚R^‚R‚R{‚T^‚R‚S{‚V^‚R‚T{ccc{(‚Q‚Ž|‚P)^‚R‚Ž{‚P{(‚Q‚Ž{‚P)^‚R‚Ž{‚Q
@•ÓX‚đˆř‚­‚ƁC
@@‚Q^‚RE‚r‚Ž‚R^‚R‚Q{‚Q^‚R‚R{‚Q^‚R‚S{ccc{‚Q^‚R‚Ž{‚P|(‚Q‚Ž{‚P)^‚R‚Ž{‚Q
@@@@@@@‚P^‚R‚Q{‚Q^‚R‚QE(‚P{‚P^‚R{‚P^‚R‚Q{ccc{‚P^‚R‚Ž|‚P)|(‚Q‚Ž{‚P)^‚R‚Ž{‚Q
@@@@@@@‚P^‚X{‚Q^‚XE{‚P|(‚P^‚R)‚Ž}^(‚P|‚P^‚R)|(‚Q‚Ž{‚P)^‚R‚Ž{‚Q
@@@@@@@‚P^‚X{‚P^‚RE(‚P|‚P^‚R‚Ž)|(‚Q‚Ž{‚P)^‚R‚Ž{‚Q
@@@@@@@‚S^‚X|‚P^‚R‚Ž{‚P|(‚Q‚Ž{‚P)^‚R‚Ž{‚Q
@@@@@@@{‚SE‚R‚Ž|‚R|(‚Q‚Ž{‚P)}^‚R‚Ž{‚Q
@@@@@@@(‚SE‚R‚Ž|‚Q‚Ž|‚S)^‚R‚Ž{‚Q
@@ˆ‚r‚Ž‚R^‚QE(‚SE‚R‚Ž|‚Q‚Ž|‚S)^‚R‚Ž{‚Q
@@@@(‚QE‚R‚Ž|‚Ž|‚Q)^‚R‚Ž{‚P
@@ˆ‚‚‚Ž‚S^‚R|‚r‚Ž|‚P
@@@@‚S^‚R|{‚QE‚R‚Ž|‚P|(‚Ž|‚P)|‚Q}^‚R‚Ž
@@@@(‚SE‚R‚Ž|‚P|‚QE‚R‚Ž|‚P{‚Ž|‚P{‚Q)^‚R‚Ž
@@@@(‚QE‚R‚Ž|‚P{‚Ž{‚P)^‚R‚Ž
@‚ą‚ę‚Í‚Ž‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@@ˆ‚‚‚Ž(‚QE‚R‚Ž|‚P{‚Ž{‚P)^‚R‚Ž‚‚Ž^‚R‚Ž
@@ˆ‚‚Ž‚QE‚R‚Ž|‚P{‚Ž{‚P

i•Ę‰đj(9)@‚‚Ž{‚P|‚R‚‚Ž|‚Q‚Ž|‚P
‚đŽg‚킸C
@@(5)@‚‚Ž{‚P|‚Q‚‚Ž‚QE‚R‚Ž|‚P|‚Ž
‚Ě‚Ý‚đŽg‚¤‰đ–@

@@‚‚Ž{‚P|‚Q‚‚Ž‚QE‚R‚Ž|‚P|‚Ž
‚Š‚çC
@@‚‚Ž{‚P^‚Q‚Ž{‚P|‚‚Ž^‚Q‚Ž‚P^‚QE(‚R^‚Q)‚Ž|‚P|‚Ž^‚Q‚Ž{‚P
@‚ą‚ą‚ŁC
@@‚‚‚Ž‚‚Ž^‚Q‚Ži‚Ž‚PC‚QC‚RCcccj
‚Ć‚ˇ‚é‚ƁC
@@‚‚‚Ž{‚P|‚‚‚Ž‚P^‚QE(‚R^‚Q)‚Ž|‚P|‚Ž^‚Q‚Ž{‚P
@‚Ž†‚Q‚Ě‚Ć‚ŤC
@@‚‚‚Ž‚‚‚P{ƒ°‚P…‚‹…‚Ž|‚P{‚P^‚QE(‚R^‚Q)‚‹|‚P|‚‹^‚Q‚‹{‚P}
@@@‚‚P^‚Q{‚P^‚QE{(‚R^‚Q)‚Ž|‚P|‚P}^(‚R^‚Q|‚P)|ƒ°‚P…‚‹…‚Ž|‚P‚‹^‚Q‚‹{‚P
@@@‚Q{‚R‚Ž|‚P^‚Q‚Ž|‚P|‚P|ƒ°‚P…‚‹…‚Ž|‚P‚‹^‚Q‚‹{‚P
@@@‚P{‚R‚Ž|‚P^‚Q‚Ž|‚P|ƒ°‚P…‚‹…‚Ž|‚P‚‹^‚Q‚‹{‚P
@‚ą‚ą‚ŁC
@@‚r‚Žƒ°‚P…‚‹…‚Ž‚‹^‚Q‚‹{‚P
@@@‚P^‚Q‚Q{‚Q^‚Q‚R{‚R^‚Q‚S{ccc{‚Ž^‚Q‚Ž{‚P
‚Ć‚ˇ‚é‚ƁC
@@‚P^‚QE‚r‚Ž‚P^‚Q‚R{‚Q^‚Q‚S{‚R^‚Q‚T{ccc{(‚Ž|‚P)^‚Q‚Ž{‚P{‚Ž^‚Q‚Ž{‚Q
@•ÓX‚đˆř‚­‚ƁC
@@‚P^‚QE‚r‚Ž‚P^‚Q‚Q{‚P^‚Q‚R{‚P^‚Q‚S{ccc{‚P^‚Q‚Ž{‚P|‚Ž^‚Q‚Ž{‚Q
@@@@@@@‚P^‚Q‚QE{‚P|(‚P^‚Q)‚Ž}^(‚P|‚P^‚Q)|‚Ž^‚Q‚Ž{‚Q
@@@@@@@‚P^‚QE(‚P|‚P^‚Q‚Ž)|‚Ž^‚Q‚Ž{‚Q
@@@@@@@‚P^‚Q|‚P^‚Q‚Ž{‚P|‚Ž^‚Q‚Ž{‚Q
@@@@@@@(‚Q‚Ž{‚P|‚Q|‚Ž)^‚Q‚Ž{‚Q
@@ˆ‚r‚Ž‚QE(‚Q‚Ž{‚P|‚Ž|‚Q)^‚Q‚Ž{‚Q
@@@@(‚Q‚Ž{‚P|‚Ž|‚Q)^‚Q‚Ž{‚P
@@ˆ‚‚‚Ž‚P{‚R‚Ž|‚P^‚Q‚Ž|‚P|‚r‚Ž|‚P
@@@@‚P{‚R‚Ž|‚P^‚Q‚Ž|‚P|{‚Q‚Ž|(‚Ž|‚P)|‚Q}^‚Q‚Ž
@@@@(‚Q‚Ž{‚QE‚R‚Ž|‚P|‚Q‚Ž{‚Ž|‚P{‚Q)^‚Q‚Ž
@@@@(‚QE‚R‚Ž|‚P{‚Ž{‚P)^‚Q‚Ž
@‚ą‚ę‚Í‚Ž‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@@ˆ‚‚‚Ž(‚QE‚R‚Ž|‚P{‚Ž{‚P)^‚Q‚Ž‚‚Ž^‚Q‚Ž
@@ˆ‚‚Ž‚QE‚R‚Ž|‚P{‚Ž{‚P

–â‘č‚QD
i•Ę‰đj
@@‚‚Ž{‚Q|‚Q‚‚Ž{‚P‚R(‚‚Ž{‚P|‚Q‚‚Ž){‚QE‚S‚Ž
‚É‚¨‚˘‚āC
@@‚‚‚Ž‚‚Ž{‚P|‚Q‚‚Ži‚Ž‚PC‚QC‚RCcccj
‚Ć‚ˇ‚é‚ƁC
@@‚‚‚Ž{‚P‚R‚‚‚Ž{‚QE‚S‚Ž
@@ˆ‚‚‚Ž{‚P^‚R‚Ž{‚P‚‚‚Ž^‚R‚Ž{‚Q^‚RE(‚S^‚R)‚Ž
@‚ƒ‚Ž‚‚‚Ž^‚R‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚ƒ‚Ž{‚P‚ƒ‚Ž{‚Q^‚RE(‚S^‚R)‚Ž
@‚Ž†‚Q‚Ě‚Ć‚ŤC
@@‚ƒ‚Ž‚ƒ‚P{ƒ°‚P…‚‹…‚Ž|‚P‚Q^‚RE(‚S^‚R)‚‹
@@@‚‚‚P^‚R{‚Q^‚RE‚S^‚RE{(‚S^‚R)‚Ž|‚P|‚P}^(‚S^‚R|‚P)
@@@(‚‚Q|‚Q‚‚P)^‚R{‚W^‚RE(‚S‚Ž|‚P^‚R‚Ž|‚P|‚P)
@@@‚P‚P^‚R{‚QE‚S‚Ž^‚R‚Ž|‚W^‚R
@@@‚QE‚S‚Ž^‚R‚Ž{‚P
@@@(‚QE‚S‚Ž{‚R‚Ž)^‚R‚Ž
@‚ą‚ę‚Í‚Ž‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@@ˆ‚ƒ‚Ž(‚QE‚S‚Ž{‚R‚Ž)^‚R‚Ž‚‚‚Ž^‚R‚Ž
@@ˆ‚‚‚Ž‚QE‚S‚Ž{‚R‚Ž
@@ˆ‚‚Ž{‚P|‚Q‚‚Ž‚QE‚S‚Ž{‚R‚Žccc(A)

@@‚‚Ž{‚Q|‚R‚‚Ž{‚P‚Q(‚‚Ž{‚P|‚R‚‚Ž){‚QE‚S‚Ž
‚É‚¨‚˘‚āC
@@‚„‚Ž‚‚Ž{‚P|‚R‚‚Ži‚Ž‚PC‚QC‚RCcccj
‚Ć‚ˇ‚é‚ƁC
@@‚„‚Ž{‚P‚Q‚„‚Ž{‚QE‚S‚Ž
@@ˆ‚„‚Ž{‚P^‚Q‚Ž{‚P‚„‚Ž^‚Q‚Ž{‚Q‚Ž
@‚…‚Ž‚„‚Ž^‚Q‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚ˇ‚é‚ƁC
@@‚…‚Ž{‚P‚…‚Ž{‚Q‚Ž
@‚Ž†‚Q‚Ě‚Ć‚ŤC
@@‚…‚Ž‚…‚P{ƒ°‚P…‚‹…‚Ž|‚P‚Q‚‹
@@@‚„‚P^‚Q{‚QE(‚Q‚Ž|‚P|‚P)^(‚Q|‚P)
@@@(‚‚Q|‚R‚‚P)^‚Q{‚Q‚Ž|‚Q
@@@‚R{‚Q‚Ž|‚Q
@@@‚Q‚Ž{‚P
@‚ą‚ę‚Í‚Ž‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@@ˆ‚…‚Ž‚Q‚Ž{‚P‚„‚Ž^‚Q‚Ž
@@ˆ‚„‚Ž‚S‚Ž{‚Q‚Ž
@@ˆ‚‚Ž{‚P|‚R‚‚Ž‚S‚Ž{‚Q‚Žccc(B)

@(A)|(B)‚Š‚çC
@@‚‚Ž‚S‚Ž{‚R‚Ž|‚Q‚Ž
i‚˘‚ł‚ł‚ŠC‚â‚股‚Ź‚Ü‚ľ‚˝j

u•l“c–ž–¤v@01/23 16Žž25•Ş@ŽóM  XV02/16

–â‘č‚PDiƒqƒ“ƒg‚đŒł‚Éj
i•Ę‰đj‚‚Ž{‚Q|‚Q‚‚Ž{‚P‚R(‚‚Ž{‚P|‚Q‚‚Ž){‚Q‚Ž|‚P
‚Ć•ĎŒ`‚Ĺ‚Ť‚é‚̂ŁC
@@‚‚Ž‚E‚R‚Ž{‚‚E‚Q‚Ž{‚ƒ‚Ž{‚„i‚C‚‚C‚ƒC‚„‚͒萔j
‚Ć‚ˇ‚éD
@@‚‚P‚R‚{‚Q‚‚{‚ƒ{‚„‚Sccc(1)
@@‚‚Q‚X‚{‚S‚‚{‚Q‚ƒ{‚„‚Xccc(2)
@‚Ü‚˝C
@@‚‚R‚T‚‚Q|‚U‚‚P{‚P‚TE‚X|‚UE‚S{‚P‚Q‚Q
@@‚‚S‚T‚‚R|‚U‚‚Q{‚R‚TE‚Q‚Q|‚UE‚X{‚R‚T‚X
‚Š‚çC
@@‚‚R‚Q‚V‚{‚W‚‚{‚R‚ƒ{‚„‚Q‚Qccc(3)
@@‚‚S‚W‚P‚{‚P‚U‚‚{‚S‚ƒ{‚„‚T‚Xccc(4)
@(2)|(1)‚Š‚çC
@@‚U‚{‚Q‚‚{‚ƒ‚Tccc(5)
@(3)|(2)‚Š‚çC
@@‚P‚W‚{‚S‚‚{‚ƒ‚P‚Rccc(6)
@(4)|(3)‚Š‚çC
@@‚T‚S‚{‚W‚‚{‚ƒ‚R‚Vccc(7)
@(6)|(5)‚Š‚çC
@@‚P‚Q‚{‚Q‚‚‚W@@@ˆ‚U‚{‚‚‚Sccc(8)
@(7)|(6)‚Š‚çC
@@‚R‚U‚{‚S‚‚‚Q‚S@@@ˆ‚X‚{‚‚‚Uccc(9)
@(9)|(8)‚Š‚çC
@@‚R‚‚Q@@@ˆ‚‚Q^‚R
@(8)‚Š‚çC
@@‚‚‚S|‚U‚‚S|‚S‚O
@(5)‚Š‚çC
@@‚ƒ‚T|‚U‚|‚Q‚‚‚T|‚S‚P
@(1)‚Š‚çC
@@‚„‚S|‚R‚|‚Q‚‚|‚ƒ‚S|‚Q|‚P‚P
@@ˆ‚‚Ž‚QE‚R‚Ž|‚P{‚Ž{‚P
@‚ą‚ę‚𐔊w“I‹A”[–@‚ĹŘ–ž‚ˇ‚éD
@‚Ž‚PC‚Ž‚Q‚Ě‚Ć‚ŤC–ž‚ç‚Š‚ɐŹ—§‚ˇ‚éD
@‚Ž‚‹C‚Ž‚‹{‚Pi‚‹†‚Pj‚Ě‚Ć‚ŤCŹ—§‚ˇ‚é‚Ɖź’股‚é‚ƁC
@@‚‚‹‚QE‚R‚‹|‚P{‚‹{‚PC‚‚‹{‚P‚QE‚R‚‹{‚‹{‚Q
@@ˆ‚‚‹{‚Q‚T‚‚‹{‚P|‚U‚‚‹{‚Q‚‹|‚P
@@@@@‚T(‚QE‚R‚‹{‚‹{‚Q)|‚U(‚QE‚R‚‹|‚P{‚‹{‚P){‚Q‚‹|‚P
@@@@@(‚P‚O|‚S)E‚R‚‹{‚T‚‹{‚P‚O|‚U‚‹|‚U{‚Q‚‹|‚P
@@@@@‚QE‚R‚‹{‚P{‚‹{‚R
@ŒĚ‚É‚Ž‚‹{‚Q‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@ŒĚ‚É‚ˇ‚ׂĂ̎Š‘R”‚Ž‚ɂ‚˘‚āC
@@‚‚Ž‚QE‚R‚Ž|‚P{‚Ž{‚P

–â‘č‚QDi•Ę‰đj‚‚Ž{‚Q|‚Q‚‚Ž{‚P‚R(‚‚Ž{‚P|‚Q‚‚Ž){‚QE‚S‚Ž
‚Ć•ĎŒ`‚Ĺ‚Ť‚é‚̂ŁC
@@‚‚Ž‚E‚S‚Ž{‚‚E‚R‚Ž{‚ƒE‚Q‚Ž{‚„i‚C‚‚C‚ƒC‚„‚͒萔j
‚Ć‚ˇ‚éD
@@‚‚P‚S‚{‚R‚‚{‚Q‚ƒ{‚„‚Tccc(1)
@@‚‚Q‚P‚U‚{‚X‚‚{‚S‚ƒ{‚„‚Q‚Pccc(2)
@‚Ü‚˝C
@@‚‚R‚T‚‚Q|‚U‚‚P{‚QE‚S‚TE‚Q‚P|‚UE‚T{‚W‚W‚R
@@‚‚S‚T‚‚R|‚U‚‚Q{‚QE‚S‚Q‚TE‚W‚R|‚UE‚Q‚P{‚R‚Q‚R‚Q‚P
‚Š‚çC
@@‚‚R‚U‚S‚{‚Q‚V‚‚{‚W‚ƒ{‚„‚W‚Rccc(3)
@@‚‚S‚Q‚T‚U‚{‚W‚P‚‚{‚P‚U‚ƒ{‚„‚R‚Q‚Pccc(4)
@(2)|(1)‚Š‚çC
@@‚P‚Q‚{‚U‚‚{‚Q‚ƒ‚P‚Uccc(5)
@(3)|(2)‚Š‚çC
@@‚S‚W‚{‚P‚W‚‚{‚S‚ƒ‚U‚Q@@@ˆ‚Q‚S‚{‚X‚‚{‚Q‚ƒ‚R‚Pccc(6)
@(4)|(3)‚Š‚çC
@@‚P‚X‚Q‚{‚T‚S‚‚{‚W‚ƒ‚Q‚R‚W@@@ˆ‚X‚U‚{‚Q‚V‚‚{‚S‚ƒ‚P‚P‚Xccc(7)
@(6)|(5)‚Š‚çC
@@‚P‚Q‚{‚R‚‚‚P‚Tccc(8)
@(7)|(6)~‚Q‚Š‚çC
@@‚S‚W‚{‚X‚‚‚T‚V@@@ˆ‚P‚U‚{‚R‚‚‚P‚Xccc(9)
@(9)|(8)‚Š‚çC
@@‚S‚‚S@@@ˆ‚‚P
@(8)‚Š‚çC‚‚‚T|‚S‚‚P
@(5)‚Š‚çC‚ƒ‚W|‚U‚|‚R‚‚|‚P
@(1)‚Š‚çC‚„‚T|‚S‚|‚R‚‚|‚Q‚ƒ‚O
@@ˆ‚‚Ž‚S‚Ž{‚R‚Ž|‚Q‚Ž
@‚ą‚ę‚𐔊w“I‹A”[–@‚ĹŘ–ž‚ˇ‚éD
@‚Ž‚PC‚Ž‚Q‚Ě‚Ć‚ŤC–ž‚ç‚Š‚ɐŹ—§‚ˇ‚éD
@‚Ž‚‹C‚Ž‚‹{‚Pi‚‹†‚Pj‚Ě‚Ć‚ŤCŹ—§‚ˇ‚é‚Ɖź’股‚é‚ƁC
@@‚‚‹‚S‚‹{‚R‚‹|‚Q‚‹C‚‚‹{‚P‚S‚‹{‚P{‚R‚‹{‚P|‚Q‚‹{‚P
@@ˆ‚‚‹{‚Q‚T‚‚‹{‚P|‚U‚‚‹{‚QE‚S‚‹
@@@@@‚T(‚S‚‹{‚P{‚R‚‹{‚P|‚Q‚‹{‚P)|‚U(‚S‚‹{‚R‚‹|‚Q‚‹){‚QE‚S‚‹
@@@@@(‚Q‚O|‚U{‚Q)E‚S‚‹{(‚P‚T|‚U)E‚R‚‹{(|‚P‚O{‚U)E‚Q‚‹
@@@@@‚S‚‹{‚Q{‚R‚‹{‚Q|‚Q‚‹{‚Q
@ŒĚ‚É‚Ž‚‹{‚Q‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@ŒĚ‚É‚ˇ‚ׂĂ̎Š‘R”‚Ž‚ɂ‚˘‚āC
@@‚‚Ž‚S‚Ž{‚R‚Ž|‚Q‚Ž
iŒ‰‚˘‰đ‚Ć‚Í‚˘‚Ś‚¸C‚ ‚Ü‚čD‚Ť‚Ĺ‚Í‚ ‚č‚Ü‚š‚ńj

u•l“c–ž–¤v@02/10 10Žž59•Ş@ŽóM  XV02/16

 

–â‘č‚PF‚‚P‚SC‚‚Q‚XC‚‚Ž{‚Q|‚T‚‚Ž{‚P{‚U‚‚Ž‚Q‚Ž|‚P
i•Ę‰đji‚P|‚T{‚U‚Q‚đŽg‚¤•ű–@j
@‚‚Ž{‚Q|‚T‚‚Ž{‚P{‚U‚‚Ž‚Q‚Ž|‚P‚Š‚çC
@@{‚‚Ž{‚Q|(‚Ž{‚Q)|‚P}|‚T{‚‚Ž{‚P|(‚Ž{‚P)|‚P}{‚U(‚‚Ž|‚Ž|‚P)‚Q‚Ž|‚P|(‚Ž{‚Q)|‚P{‚T{(‚Ž{‚P){‚P}|‚U(‚Ž{‚P)‚O
@‚‚‚Ž‚‚Ž|‚Ž|‚Pi‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚‚‚Ž{‚Q|‚T‚‚‚Ž{‚P{‚U‚‚‚Ž‚O
@@ˆ‚‚‚Ž{‚Q|‚Q‚‚‚Ž{‚P‚R(‚‚‚Ž{‚P|‚Q‚‚‚Ž)ccc‡@
@@@‚‚‚Ž{‚Q|‚R‚‚‚Ž{‚P‚Q(‚‚‚Ž{‚P|‚R‚‚‚Ž)ccc‡A
@‡@‚É‚¨‚˘‚āC‚ƒ‚Ž‚‚‚Ž{‚P|‚Q‚‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚ƒ‚Ž{‚P‚R‚ƒ‚Ž
@ŒĚ‚ɐ”—ńo‚ƒ‚Žp‚́C‰€
@@‚ƒ‚P‚‚‚Q|‚Q‚‚‚P(‚‚Q|‚Q|‚P)|‚Q(‚‚P|‚P|‚P)(‚X|‚R)|‚Q(‚S|‚Q)‚Q
Œö”ä‚R‚Ě“™”䐔—ń‚Ĺ‚ ‚éD
@@ˆ‚ƒ‚Ž‚QE‚R‚Ž|‚P
@@ˆ‚‚‚Ž{‚P|‚Q‚‚‚Ž‚QE‚R‚Ž|‚Pccc‡B
@‡A‚É‚¨‚˘‚āC‚„‚Ž‚‚‚Ž{‚P|‚R‚‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚„‚Ž{‚P‚Q‚„‚Ž
@ŒĚ‚ɐ”—ńo‚„‚Žp‚́C‰€
@@‚„‚P‚‚‚Q|‚R‚‚‚P‚U|‚RE‚Q‚O
Œö”ä‚Q‚Ě“™”䐔—ń‚Ĺ‚ ‚éD
@@ˆ‚„‚Ž‚OE‚Q‚Ž|‚P‚O
@@ˆ‚‚‚Ž{‚P|‚R‚‚‚Ž‚Occc‡C
@‡B|‡C‚Š‚çC‚‚‚Ž‚QE‚R‚Ž|‚P
@@ˆ‚‚Ž|‚Ž|‚P‚QE‚R‚Ž|‚P
@@ˆ‚‚Ž‚QE‚R‚Ž|‚P{‚Ž{‚P

i•Ę‰đjiŠKˇ”—ń‚đŽg‚¤•ű–@j
@‚Ž‚É‚Ž{‚P‚đ‘ă“ü‚ˇ‚é‚ƁC
@@‚‚Ž{‚R|‚T‚‚Ž{‚Q{‚U‚‚Ž{‚P‚Q‚Ž{‚P
@@‚‚Ž{‚Q|‚T‚‚Ž{‚P{‚U‚‚Ž@‚Q‚Ž|‚P
@ˇ‚đ‚Ć‚é‚ƁC
@@(‚‚Ž{‚R|‚‚Ž{‚Q)|‚T(‚‚Ž{‚Q|‚‚Ž{‚P){‚U(‚‚Ž{‚P|‚‚Ž)‚Q
@‚‚‚Ž‚‚Ž{‚P|‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚‚‚Ž{‚Q|‚T‚‚‚Ž{‚P{‚U‚‚‚Ž‚Q
@‚Ž‚É‚Ž{‚P‚đ‘ă“ü‚ˇ‚é‚ƁC
@@‚‚‚Ž{‚R|‚T‚‚‚Ž{‚Q{‚U‚‚‚Ž{‚P‚Q
@@‚‚‚Ž{‚Q|‚T‚‚‚Ž{‚P{‚U‚‚‚Ž@‚Q
@ˇ‚đ‚Ć‚é‚ƁC
@@(‚‚‚Ž{‚R|‚‚‚Ž{‚Q)|‚T(‚‚‚Ž{‚Q|‚‚‚Ž{‚P){‚U(‚‚‚Ž{‚P|‚‚‚Ž)‚O
@‚ƒ‚Ž‚‚‚Ž{‚P|‚‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚ƒ‚Ž{‚Q|‚T‚ƒ‚Ž{‚P{‚U‚ƒ‚Ž‚O
@@ˆ‚ƒ‚Ž{‚Q|‚R‚ƒ‚Ž{‚P‚Q(‚ƒ‚Ž{‚P|‚R‚ƒ‚Ž)
@‚„‚Ž‚ƒ‚Ž{‚P|‚R‚ƒ‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚„‚Ž{‚P‚Q‚„‚Ž
@@ˆ‚„‚Ž‚„‚PE‚Q‚Ž|‚P
@‚ą‚ą‚ŁC
@@‚‚R‚T‚‚Q|‚U‚‚P{‚P‚TE‚X|‚UE‚S{‚P‚S‚T|‚Q‚S{‚P‚Q‚Q
@@‚‚S‚T‚‚R|‚U‚‚Q{‚R‚TE‚Q‚Q|‚UE‚X{‚R‚P‚P‚O|‚T‚S{‚R‚T‚X
@@‚‚‚P‚‚Q|‚‚P‚X|‚S‚T
@@‚‚‚Q‚‚R|‚‚Q‚Q‚Q|‚X‚P‚R
@@‚‚‚R‚‚S|‚‚R‚T‚X|‚Q‚Q‚R‚V
@@‚ƒ‚P‚‚‚Q|‚‚‚P‚P‚R|‚T‚W
@@‚ƒ‚Q‚‚‚R|‚‚‚Q‚R‚V|‚P‚R‚Q‚S
@@‚„‚P‚ƒ‚Q|‚R‚ƒ‚P‚Q‚S|‚RE‚W‚O
@@ˆ‚„‚Ž‚OE‚Q‚Ž|‚P‚O
@@ˆ‚ƒ‚Ž{‚P|‚R‚ƒ‚Ž‚O
@@ˆ‚ƒ‚Ž{‚P‚R‚ƒ‚Ž
@@ˆ‚ƒ‚Ž‚ƒ‚PE‚R‚Ž|‚P‚WE‚R‚Ž|‚P
@@ˆ‚‚‚Ž{‚P|‚‚‚Ž‚WE‚R‚Ž|‚P
@‚Ž†‚Q‚Ě‚Ć‚ŤC
@@‚‚‚Ž‚‚‚P{ƒ°‚P…‚‹…‚Ž|‚P‚WE‚R‚‹|‚P
@@@‚T{‚WE(‚R‚Ž|‚P|‚P)^(‚R|‚P)
@@@‚T{‚S(‚R‚Ž|‚P|‚P)
@@@‚SE‚R‚Ž|‚P{‚P
@‚ą‚ę‚Í‚Ž‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@@ˆ‚‚‚Ž‚SE‚R‚Ž|‚P{‚P
@@ˆ‚‚Ž{‚P|‚‚Ž‚SE‚R‚Ž|‚P{‚P
@‚Ž†‚Q‚Ě‚Ć‚ŤC
@@‚‚Ž‚‚P{ƒ°‚P…‚‹…‚Ž|‚P(‚SE‚R‚‹|‚P{‚P)
@@@‚S{‚SE(‚R‚Ž|‚P|‚P)^(‚R|‚P){(‚Ž|‚P)
@@@‚Q(‚R‚Ž|‚P|‚P){‚Ž{‚R
@@@‚QE‚R‚Ž|‚P{‚Ž{‚P
@‚ą‚ę‚Í‚Ž‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@@ˆ‚‚Ž‚QE‚R‚Ž|‚P{‚Ž{‚P

–â‘č‚QF‚‚P‚TC‚‚Q‚Q‚PC‚‚Ž{‚Q|‚T‚‚Ž{‚P{‚U‚‚Ž‚QE‚S‚Ž
i•Ę‰đj‚‚Ž{‚Q|‚T‚‚Ž{‚P{‚U‚‚Ž‚QE‚S‚Ž‚Š‚çC
@@(‚‚Ž{‚Q|‚S‚Ž{‚Q)|‚T(‚‚Ž{‚P|‚S‚Ž{‚P){‚U(‚‚Ž|‚S‚Ž)‚QE‚S‚Ž|‚P‚UE‚S‚Ž{‚Q‚OE‚S‚Ž|‚UE‚S‚Ž‚O
@‚‚‚Ž‚‚Ž|‚S‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚‚‚Ž{‚Q|‚T‚‚‚Ž{‚P{‚U‚‚‚Ž‚O
@@ˆ‚‚‚Ž{‚Q|‚Q‚‚‚Ž{‚P‚R(‚‚‚Ž{‚P|‚Q‚‚‚Ž)ccc‡@
@@@‚‚‚Ž{‚Q|‚R‚‚‚Ž{‚P‚Q(‚‚‚Ž{‚P|‚R‚‚‚Ž)ccc‡A
@‡@‚É‚¨‚˘‚āC‚ƒ‚Ž‚‚‚Ž{‚P|‚Q‚‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚ƒ‚Ž{‚P‚R‚ƒ‚Ž
@ŒĚ‚ɐ”—ńo‚ƒ‚Žp‚́C‰€
@@‚ƒ‚P‚‚‚Q|‚Q‚‚‚P(‚‚Q|‚S‚Q)|‚Q(‚‚P|‚S)(‚Q‚P|‚P‚U)|‚Q(‚T|‚S)‚R
Œö”ä‚R‚Ě“™”䐔—ń‚Ĺ‚ ‚éD
@@ˆ‚ƒ‚Ž‚RE‚R‚Ž|‚P‚R‚Ž
@@ˆ‚‚‚Ž{‚P|‚Q‚‚‚Ž‚R‚Žccc‡B
@‡A‚É‚¨‚˘‚āC‚„‚Ž‚‚‚Ž{‚P|‚R‚‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚„‚Ž{‚P‚Q‚„‚Ž
@ŒĚ‚ɐ”—ńo‚„‚Žp‚́C‰€
@@‚„‚P‚‚‚Q|‚R‚‚‚P‚T|‚RE‚P‚Q
Œö”ä‚Q‚Ě“™”䐔—ń‚Ĺ‚ ‚éD
@@ˆ‚„‚Ž‚QE‚Q‚Ž|‚P‚Q‚Ž
@@ˆ‚‚‚Ž{‚P|‚R‚‚‚Ž‚Q‚Žccc‡C
@‡B|‡C‚Š‚çC‚‚‚Ž‚R‚Ž|‚Q‚Ž
@@ˆ‚‚Ž|‚S‚Ž‚R‚Ž|‚Q‚Ž
@@ˆ‚‚Ž‚S‚Ž{‚R‚Ž|‚Q‚Ž

i•Ę‰đjiă•Ę‰đ‚̇B‚ž‚Ż‚đ—p‚˘‚Ä‰đ‚­j
@‡B‚Ě—ź•Ó‚đ‚Q‚Ž{‚P‚ĹŠ„‚é‚ƁC
@@‚‚‚Ž{‚P^‚Q‚Ž{‚P|‚‚‚Ž^‚Q‚Ž‚R‚Ž^‚Q‚Ž{‚P‚R^‚SE(‚R^‚Q)‚Ž|‚P
@‚ƒ‚Ž‚‚‚Ž^‚Q‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚ƒ‚Ž{‚P|‚ƒ‚Ž‚R^‚SE(‚R^‚Q)‚Ž|‚P
@‚Ž†‚Q‚Ě‚Ć‚ŤC
@@‚ƒ‚Ž‚ƒ‚P{ƒ°‚P…‚‹…‚Ž|‚P‚R^‚SE(‚R^‚Q)‚‹|‚P
@@@‚‚‚P^‚Q{‚R^‚SE{(‚R^‚Q)‚Ž|‚P|‚P}^(‚R^‚Q|‚P)
@@@‚P^‚Q{‚R^‚QE{(‚R^‚Q)‚Ž|‚P|‚P}
@@@‚P^‚Q{(‚R^‚Q)‚Ž|‚R^‚Q
@@@(‚R^‚Q)‚Ž|‚P
@‚ą‚ę‚Í‚Ž‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@@ˆ‚ƒ‚Ž(‚R^‚Q)‚Ž|‚P‚‚‚Ž^‚Q‚Ž
@@ˆ‚‚‚Ž‚R‚Ž|‚Q‚Ž‚‚Ž|‚S‚Ž
@@ˆ‚‚Ž‚S‚Ž{‚R‚Ž|‚Q‚Ž

i•Ę‰đjiăă•Ę‰đ‚̇C‚ž‚Ż‚đ—p‚˘‚Ä‰đ‚­j
@‡C‚Ě—ź•Ó‚đ‚R‚Ž{‚P‚ĹŠ„‚é‚ƁC
@@‚‚‚Ž{‚P^‚R‚Ž{‚P|‚‚‚Ž^‚R‚Ž‚Q‚Ž^‚R‚Ž{‚P‚Q^‚XE(‚Q^‚R)‚Ž|‚P
@‚ƒ‚Ž‚‚‚Ž^‚R‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚ƒ‚Ž{‚P|‚ƒ‚Ž‚Q^‚XE(‚Q^‚R)‚Ž|‚P
@‚Ž†‚Q‚Ě‚Ć‚ŤC
@@‚ƒ‚Ž‚ƒ‚P{ƒ°‚P…‚‹…‚Ž|‚P‚Q^‚XE(‚Q^‚R)‚‹|‚P
@@@‚‚‚P^‚R{‚Q^‚XE{‚P|(‚Q^‚R)‚Ž|‚P}^(‚P|‚Q^‚R)
@@@‚P^‚R{‚Q^‚RE{‚P|(‚Q^‚R)‚Ž|‚P}
@@@‚P|(‚Q^‚R)‚Ž
@‚ą‚ę‚Í‚Ž‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@@ˆ‚ƒ‚Ž‚P|(‚Q^‚R)‚Ž‚‚‚Ž^‚R‚Ž
@@ˆ‚‚‚Ž‚R‚Ž|‚Q‚Ž‚‚Ž|‚S‚Ž
@@ˆ‚‚Ž‚S‚Ž{‚R‚Ž|‚Q‚Ž

i•Ę‰đj‚‚Ž{‚Q|‚T‚‚Ž{‚P{‚U‚‚Ž‚QE‚S‚Ž‚Ě—ź•Ó‚đ‚S‚Ž{‚Q‚ĹŠ„‚é‚ƁC
@@‚‚Ž{‚Q^‚S‚Ž{‚Q|‚T^‚SE‚‚Ž{‚P^‚S‚Ž{‚P{‚R^‚WE‚‚Ž^‚S‚Ž‚P^‚W
@‚‚‚Ž‚‚Ž^‚S‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚‚‚Ž{‚Q|‚T^‚SE‚‚‚Ž{‚P{‚R^‚WE‚‚‚Ž‚P^‚W
@@ˆ‚‚‚Ž{‚Q|‚P^‚QE‚‚‚Ž{‚P‚R^‚SE(‚‚‚Ž{‚P|‚P^‚QE‚‚‚Ž){‚P^‚W
@‚ƒ‚Ž‚‚‚Ž{‚P|‚P^‚QE‚‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚ƒ‚Ž{‚P‚R^‚SE‚ƒ‚Ž{‚P^‚W
@@ˆ‚ƒ‚Ž{‚P|‚P^‚Q‚R^‚SE(‚ƒ‚Ž|‚P^‚Q)
@‚„‚Ž‚ƒ‚Ž|‚P^‚Qi‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚„‚Ž{‚P‚R^‚SE‚„‚Ž
@@ˆ‚„‚Ž‚„‚PE(‚R^‚S)‚Ž|‚P
@‚ą‚ą‚ŁC
@@‚„‚P‚ƒ‚P|‚P^‚Q‚‚‚Q|‚P^‚QE‚‚‚P|‚P^‚Q‚‚Q^‚S‚Q|‚P^‚QE‚‚P^‚S|‚P^‚Q‚Q‚P^‚P‚U|‚T^‚W|‚P^‚Q‚R^‚P‚U
@@ˆ‚„‚Ž‚R^‚P‚UE(‚R^‚S)‚Ž|‚P‚R‚Ž^‚S‚Ž{‚P
@@ˆ‚ƒ‚Ž|‚P^‚Q‚R‚Ž^‚S‚Ž{‚P
@@ˆ‚ƒ‚Ž‚P^‚Q{‚R‚Ž^‚S‚Ž{‚P
@@ˆ‚‚‚Ž{‚P|‚P^‚QE‚‚‚Ž‚P^‚Q{‚R‚Ž^‚S‚Ž{‚P
@—ź•Ó‚É‚Q‚Ž{‚P‚đ‚Š‚Ż‚é‚ƁC
@@‚Q‚Ž{‚P‚‚‚Ž{‚P|‚Q‚Ž‚‚‚Ž‚Q‚Ž{‚R‚Ž^‚Q‚Ž{‚P
@‚…‚Ž‚Q‚Ž‚‚‚Ži‚Ž‚PC‚QC‚RCcccj‚Ć‚¨‚­‚ƁC
@@‚…‚Ž{‚P|‚…‚Ž‚Q‚Ž{‚R‚Ž^‚Q‚Ž{‚P
@‚Ž†‚Q‚Ě‚Ć‚ŤC
@@‚…‚Ž‚…‚P{ƒ°‚P…‚‹…‚Ž|‚P(‚Q‚‹{‚R‚‹^‚Q‚‹{‚P)
@@@‚Q‚‚‚P{‚QE(‚Q‚Ž|‚P|‚P)^(‚Q|‚P){‚R^‚SE{(‚R^‚Q)‚Ž|‚P|‚P}^(‚R^‚Q|‚P)
@@@‚Q‚‚P^‚S{‚Q‚Ž|‚Q{‚R^‚QE{(‚R^‚Q)‚Ž|‚P|‚P}
@@@‚T^‚Q{‚Q‚Ž|‚Q{(‚R^‚Q)‚Ž|‚R^‚Q
@@@‚Q‚Ž{(‚R^‚Q)‚Ž|‚P
@‚ą‚ę‚Í‚Ž‚P‚Ě‚Ć‚Ť‚ŕŹ—§‚ˇ‚éD
@@ˆ‚…‚Ž‚Q‚Ž{(‚R^‚Q)‚Ž|‚P
@@ˆ‚Q‚Ž‚‚‚Ž‚Q‚Ž‚‚Ž^‚S‚Ž‚‚Ž^‚Q‚Ž‚Q‚Ž{(‚R^‚Q)‚Ž|‚P
@@ˆ‚‚Ž‚S‚Ž{‚R‚Ž|‚Q‚Ž

NO3u‘‹N‚Ť‚Ě‚¨‚ś‚ł‚ńv1/21 21Žž33•Ş@ŽóM@

u‘‹N‚Ť‚Ě‚¨‚ś‚ł‚ńv1/22 09Žž44•Ş@ŽóM XV02/16

Ą‰ń‚Ě–â‘č‚Í‚Q‚đŒvŽZ‚ľ‚Ä‚˘‚Á‚˝‚ç‚Ť‚ꂢ‚É‚Č‚Á‚˝‚Ě‚Ĺ‚¤‚ę‚ľ‚­‚Č‚č‚Ü‚ľ‚˝B

‹v‚ľ‚Ô‚č‚ɏW’†‚ľ‚˝Šy‚ľ‚˘ŽžŠÔ‚đ‰ß‚˛‚š‚Ü‚ľ‚˝B

 

–â‘č‚P

œ“ń‰ńAŠKˇ”—ń‚đ‚Ć‚č‰đ‚Ż‚éŒ`‚É’ź‚ľ‚Ü‚ˇB

Eˆę‰ń–ڂ͉E•Ó‚̕ϐ”‚đÁ‚ľ‚Ü‚ˇB

(1)|(2)‚ć‚čA

‚ą‚ĚŠKˇ”—ń‚đ‚Ć‚ľ‚Ü‚ˇB

 

E“ń‰ń–ڂ͉E•Ó‚đ—ë‚É‚ľ‚Ü‚ˇB

(3)|(4)‚ć‚čA

‚ą‚ĚŠKˇ”—ń‚đ‚Ć‚ľ‚Ü‚ˇB

 

œŽŔŰ‚É‰đ‚Ť‚Ü‚ˇB

E•ű’öŽŽ‚̉đ‚đ—p‚˘‚Ä(5)‚ĚŽŽ‚đ•ĎŒ`‚ľ‚Ü‚ˇB

@(6)‚ć‚čA‚́A‰€AŒö”ä3‚Ě“™”䐔—ń‚Ȃ̂ŁA

@(7)‚ć‚čA‚́A‰€AŒö”ä2‚Ě“™”䐔—ń‚Ȃ̂ŁA

@(8)A(9)‚đ˜A—§‚ł‚š(8)|(9)‚ć‚č‚ɂ‚˘‚Ä‰đ‚­‚ĆA

 

E‚ÍŠKˇ‚Ȃ̂ŁA

‚ĚŠKˇ‚ށA“ń‚‚̓™”䐔—ń‚̍ˇ‚ĚŒ`‚É‚Č‚Á‚Ä‚˘‚é‚̂ŁA

ˆ
ˆ@

 

E‹ď‘Ě“I‚É‹‚ß‚é‚ƁA

‚Ȃ̂ŁA

 

–â‘č‚Q

œ–â‘č‚P‚đƒqƒ“ƒg‚É‰đ‚Ż‚éŒ`‚É’ź‚ľ‚Ü‚ˇB

‚Ě—ź•Ó‚đ‚ĹŠ„‚č‚Ü‚ˇB
‚Ȃ̂ŁA‚Ć‚¨‚­‚ƁA

 

œ‚ɂ‚˘‚Ä‰đ‚Ť‚Ü‚ˇB

E‚Ü‚¸ŠKˇ‚đ‚Ć‚č‚Ü‚ˇB

(10)|(11)‚ć‚čA

‚ą‚ĚŠKˇ”—ń‚đ‚Ć‚ľ‚Ü‚ˇB

E•ű’öŽŽ‚̉đ‚đ—p‚˘‚āA(12)‚ĚŽŽ‚đ•ĎŒ`‚ľ‚Ü‚ˇB

@(13)‚ć‚čA‚́A‰€AŒö”ä‚Ě“™”䐔—ń‚Ȃ̂ŁA

@(14)‚ć‚čA‚́A‰€AŒö”ä‚Ě“™”䐔—ń‚Ȃ̂ŁA

@(15)A(16)‚đ˜A—§‚ł‚š(16)|(15)‚ć‚č‚ɂ‚˘‚Ä‰đ‚­‚ĆA

@ˆ

 

E‚ÍŠKˇ‚Ȃ̂ŁA

‚ĚŠKˇ‚ށA“ń‚‚̓™”䐔—ń‚̍ˇ‚ĚŒ`‚É‚Č‚Á‚Ä‚˘‚é‚̂ŁA

@ˆ

 

E‚Ć‚¨‚˘‚˝‚̂ŁA

@ˆ

 

E‹ď‘Ě“I‚É‹‚ß‚é‚ƁA

‚Ȃ̂ŁA

 

NO4  u‚É‚˘‚΂čZ12v1/24 02Žž14•Ş ŽóM @XV02/16

‚É‚˘‚΂čZ12‚Ĺ‚ˇ

”—ń‚Ě“Y‚ŚŽš‚Ɛ”Žš‚đ‹ć•Ę‚ˇ‚é‚˝‚ß“Y‚ŚŽš‚ĚŒă‚ë‚ɂ̓sƒŠƒIƒh‚đ‚‚Ż‚Ä‚˘‚Ü‚ˇB

 

–â‘č1

‰ş•\‚̂悤‚ɐ”Žš‚đ‹ď‘Ě“I‚ɏ‘‚Ťo‚ľ‘ć2ŠKˇ‚Ü‚Ĺ‚Ć‚é‚ƁA“™”䐔—ń‚É‚Č‚Á‚Ä‚˘‚é‚Ɨސ„‚Ĺ‚Ť‚é‚Ě‚ĹŠKˇ‚Š‚琔—ń‚đ‹t‚ÉŒvŽZ‚ľ‚Ä‚˘‚­‚Ć•\‚̂悤‚ÉŒł‚̐”—ń‚Í

an=1+n+2*3^(n-1)‚Ěˆę”ʍ€‚đŽ‚Â‚ą‚Ć‚Ş—Ţ„‚ł‚ę‚Ü‚ˇB

 

 

n

@

@

anD.+2-5an+1D+6anD=2n-1

@

@

@

@

@

@

@

anD+2=5an+1D-6anD+2n-1

@

@

@

@

anD=(5an+1D-an+2D+2n-1)/6

@

@

@

@

@

@

@

@

‘ć1ŠKˇ

@

@

@

@

@

@

@

@

@

ƒżiD

‘ć2ŠKˇi“™”䐔—ńj

@

@

@

@

@

@

i=n-1

ƒŔjD=ƒŔ1D*3^(j-1)=8*3^(n-3)

@

@

@

@

j=n-2

r

@

@

@

@

@

@

@

@

@

@

SƒŔjD=ƒŔ1D*(r^j-1)/(r-1)=4*(3^(n-2)-1)

@

@

@

@

@

@

@

ƒżiD=ƒż1D+SƒŔjD=5+4*(3^(n-2)-1)=1+4*3^(n-2)

@

@

@

@

@

@

@

@

SƒżiD=(n-1)+4*((3^(n-1)-1)/(3-1))=n+2*(3^(n-1)-1)-1

@

@

@

@

@

@

@

@

@

anD=a1D+SƒżiD=4+n+2*(3^(n-1)-1)-1=1+n+2*3^(n-1)

@

@

@

@

@

@

@

@

@

@

1

a1

4

@

@

@

@

@

@

4

2

a2

9

5

@

@

@

5

5

9

3

a3

22

13

8

@

8

13

18

22

4

a4

59

37

24

3

32

37

55

59

5

a5

168

109

72

3

104

109

164

168

6

a6

493

325

216

3

320

325

489

493

7

a7

1466

973

648

3

968

973

1462

1466

8

a8

4383

2917

1944

3

2912

2917

4379

4383

9

a9

13132

8749

5832

3

8744

8749

13128

13132

10

a10

39377

26245

17496

3

26240

26245

39373

39377

11

a11

118110

78733

52488

3

78728

78733

118106

118110

12

a12

354307

236197

157464

3

236192

236197

354303

354307

 

anD=1+n+2*3^(n-1)

an+1=2+n+2*3^n     EEEE‡@

‚ސŹ—§‚ˇ‚é‚Ć‚Ť

an+2D=3+n+2*3^(n+1)EEEE‡A

‚ސŹ—§‚ˇ‚鎖‚đŽŚ‚ľ‚Ü‚ˇ

‘čˆÓ‚ć‚č

an+2D-5an+1D+6anD=2n-1

an+2D=5an+1D-6anD+2n-1EEEi‚Pj

i‚Pj‚ɇ@‚đ‘ă“ü‚ˇ‚é‚Ć

an+2D=5*(2+n+2*3^n)-6*(1+n+2*3^(n-1))+2n-1

=3+n+2*3^(n+1)

‚ƂȂ萏—§‚ľ‚Ä‚˘‚Ü‚ˇB

ˆę•ű‚Ĺ‘čˆÓ‚Š‚ç

a1D=4,a2D=9‚Ĺ‚ ‚艟’č‡@‚͏‰€‹y‚Ń‘ć2€‚ŐŹ—§‚ľ‚Ä‚˘‚鎖‚Š‚ç‘S‚Ä‚Ě€‚ŐŹ—§‚ľ‚Ü‚ˇ

‚ć‚Á‚Đ”—ń‚Ěˆę”ʍ€‚Í

anD=1+n+2*3^(n-1)@@EEEE‰ń“š

 

 

–â‘č2

an+2D-5an+1D+6anD=2E4^nA@a1D=5 A a2D=21

ˆę”ʍ€‚đ

anD=4^n+3^n-2^n

‚Ɨސ„‚ľ‚Ü‚ˇ

ŽŔŰ

a1

5

a2

21

a3

83

a4

321

a5

1235

a6

4761

a7

18443

a8

71841

a9

281315

a10

1106601

‚Ć‚Č‚č

an+2D-5an+1D+6anD=2E4^n

‚đ–ž‚˝‚ľ‚Ä‚˘‚Ü‚ˇB

 

anD=4^n+3^n-2^n

an+1D=4^(n+1)+3^(n+1)-2^(n+1) EEEE‡@

‚ސŹ—§‚ˇ‚é‚Ć‚Ť

an+2D=4^(n+2)+3^(n+2)-2^(n+2) EEEE‡A

‚ސŹ—§‚ˇ‚鎖‚đŽŚ‚ľ‚Ü‚ˇ

 

‡@‡A‚đŒł‚Ě‘Q‰ťŽŽś•Ó‚É‘ă“ü‚ˇ‚é‚Ć

4^(n+2)+3^(n+2)-2^(n+2) -5–(4^(n+1)+3^(n+1)-2^(n+1))+6–(4^n+3^n-2^n)

=2E4^n

‚ƂȂ萏—§‚ľ‚Ä‚¨‚č

 

ˆę•ű‚Ĺ

a1D=5,a2D=21‚Ĺ‚ ‚艟’č‡@‚͏‰€‹y‚Ń‘ć2€‚ŐŹ—§‚ľ‚Ä‚˘‚鎖‚Š‚ç‘S‚Ä‚Ě€‚ŐŹ—§‚ľ‚Ü‚ˇ

 

‚ć‚Á‚Đ”—ń‚Ěˆę”ʍ€‚đ

anD=4^n+3^n-2^n@EEEEE‰ń“š

\\\\\\\\\\\\\\\\

–â‘č2‚Ěˆę”ʍ€‚Í–â‘č1‚̂悤‚É‚¤‚Ü‚­—ސ„‚Ĺ‚Ť‚Č‚Š‚Á‚˝‚̂ŁAˆČ‰ş‚̂悤‚É—Í‚¸‚­‚ŗސ„‚ľ‚Ü‚ľ‚˝

 

‘Q‰ťŽŽ‚Ě—ź•Ó‚đ4^n‚ĹŠ„‚čanD/4^n=bnD‚Ć‚¨‚ŤŽ—‚ˇ‚é‚Ć

bn+2D|(5/4) bn+1D+(8/3) bnD=1/8Ab1D=5/4Ab2D=21/16EEEE‡@

bn+2D+ƒżbn+1D+ƒŔ=ƒÁ(bn+1D+ƒżbnD+ƒŔ)‚Ć‚¨‚­‚Ć

bn+2D+(ƒż-ƒÁ)bn+1D-ƒżƒÁbnD=ƒŔ(ƒÁ-1)

‡@‚Ć‚ĚŒW””äŠr‚đs‚˘

ƒż-ƒÁ=-5/4

-ƒżƒÁ=3/8

ƒŔ(ƒÁ-1)=1/8

‚ą‚ę‚đ‰đ‚­‚Ć

(A)@ ƒż=-3/4@ƒŔ=-1/4@ƒÁ=1/2

(B)@ ƒż=-1/2@ƒŔ=-1/2@ƒÁ=3/4

 

(A)‚Š‚ç

bn+2D-(3/4)bn+1D-1/4=(1/2)E(bn+1D-(3/4)bnD-1/4)

c nD= bn+1D-(3/4)bnD-1/4 ‚Ć‚¨‚­‚Ć

c n+1D=(1/2) cnD

@c1D= b2D-(3/4)b1D-1/4=1/8

‚ą‚ę‚͏‰€1/8Œö”ä1/2‚Ě“™”䐔—ń‚Č‚Ě‚Ĺ

c nD=(1/8)E(1/2)^(n-1)

c‚đb‚É‚ŕ‚Ç‚ľ‚Ä

bn+1D-(3/4)bnD-1/4=(1/8)E(1/2)^(n-1)

‚ł‚ç‚Éb‚đa‚É‚ŕ‚Ç‚ľ‚Ä

an+1D/4^(n+1)-(3/4)anD/4^n-1/4=(1/8)E(1/2)^(n-1)

Ž—‚ˇ‚é‚Ć

an+1D=3 anD+2^n+4^nEEE(A1)

 

(B)‚Š‚ç“Ż—l‚ÉŒvŽZ‚ˇ‚é‚Ć

an+1D=2 anD+3^n+2E4^nEEE(B1)

 

(A1)‚Š‚ç(B1)‚đ•ÓXˆř‚ŤŽ—‚ˇ‚é‚Ć

anD=4^n+3^n-2^n

 

 

‚Č‚¨A–â‘č1‚Ĺ‘Q‰ťŽŽ‚Ě—ź•Ó‚Š‚ç2‚Ž-3‚đˆř‚­‚Ć

(an+2D-(n+2))-5(an+1D-(n+1))+6(anD-n)=2‚Ć‚Č‚č

anD-n= bn‚Ć‚¨‚­‚Ć

bn+2D-5bn+1D+6bnD=2‚Ə‘‚Ż‚é‚ą‚Ć‚Š‚ç

“Ż—l‚ĚŽč–@‚Ĺ“ą‚Ż‚ť‚¤‚Ĺ‚ˇBEEEEŽÖ‘Ť

NO5  uƒXƒ‚[ƒNƒ}ƒ“v2/07 20Žž38•Ş ŽóM @XV02/16

‡ŠÔ‡ŠÔ‚ɍl‚Ś‚Ä‚Ü‚ľ‚˝‚ށc

“r’†‚Ü‚Ĺ‚Ĺ‚Ť‚˝‚Š‚ĆŽv‚˘‚Ü‚ˇ‚̂Łc^^;c

 

–â‘č‚PF‚(‚P)‚SC‚(‚Q)‚XC‚(‚Ž{‚Q)|‚T‚(‚Ž{‚P){‚U‚(‚Ž)‚Q‚Ž|‚P

 

a(n+2)-3a(n+1)-2(a(n+1)-3a(n))=2n-1

(a(n+2)-3a(n+1))-2((a(n+1)-3a(n)))=2n-1

 

b(n)=a(n)-3a(n-1) ‚Ć’u‚­‚Ɓc

 

b(n+2)-2b(n+1)=2n-1

b(n+2)+p(n+2)+q=2(b(n+1)+p(n+1)+q)

2p-p=2, 2q-q=-1

p=2, q=-1

b(n+2)+2(n+2)-1=2(b(n+1)+2(n+1)-1)

 

–â‘č‚QF‚(‚P)‚TC‚(‚Q)‚Q‚PC‚(‚Ž{‚Q)|‚T‚(‚Ž{‚P){‚U‚(‚Ž)‚QE‚S^‚Ž

 

“Ż—l‚ɍl‚Ś‚āc

 

b(n+2)-4^(n+1)=2(b(n+1)-4^(n))

 

Ą‚Ě‚Ć‚ą‚ë‚ą‚ą‚Ü‚Ĺ‚Ĺ‚ˇcOrz...

 

NO6  u“ń“x’Đ‚Ż”’Řv2/09 11Žž15•Ş ŽóM @XV02/16

–â‘č•ś‚É‚ ‚éAu—ސ„‚ľ‚Č‚Ş‚çv‚Ć‚˘‚¤‚̂́Auˆę”ʍ€‚đ—ސ„‚ľ‚Č‚Ş‚çv
‚Ć‚˘‚¤ˆÓ–Ą‚ɉđŽß‚ľ‚Ü‚ľ‚˝B
‚ľ‚Š‚ľŽ„‚ɂ͈ę”ʍ€‚͗ސ„‚Ĺ‚Ť‚Ü‚š‚ń‚Ĺ‚ľ‚˝B
‚Ĺ‚ˇ‚̂ŁAĄ‰ń‚Ěˆę”ʍ€‚đ“ą‚­–â‘č‚́AŽ„‚Ş•’iŽg‚Á‚Ä‚˘‚é•ęŠÖ”‚É‚ć‚é
‰đ–@‚Ĺ‰đ‚Ť‚Ü‚ľ‚˝B

–â‘č 1F
A(x)=
ƒ°[n=1`‡](a[n]*x^n) ‚Ć‚ˇ‚éB

—^‚Ś‚ç‚ę‚˝‘Q‰ťŽŽ a[n+2]-5a[n+1]+6a[n]=2n-1
‚Ě—ź•Ó‚É x^(n+2) ‚đ‚Š‚Ż‚āC
a[n+2]*x^(n+2)-5a[n+1]*x^(n+2)+6a[n]*x^(n+2) = (2n-1)*x^(n+2)
D
‚ł‚ç‚É—ź•Ó‚Ěƒ°[n=1`‡]@‚đl‚Ś‚é‚ą‚Ć‚É‚ć‚Á‚āC
ƒ°[n=1`‡](a[n+2]*x^(n+2)-5a[n+1]*x^(n+2)+6a[n]*x^(n+2)) =ƒ°[n=1`‡] ((2n-1)*x^(n+2) D
‚ą‚ą‚ŁC
(
ś•Ó)
=
ƒ°[n=1`‡](a[n+2]*x^(n+2))-5*x*ƒ°[n=1`‡](a[n+1]*x^(n+1))+6*x^2*ƒ°[n=1`‡](a[n]*x^n))
=(A(x)-a[1]*x-a[2]*x^2)-5*x*(A(x)-a[1]*x)+6*x^2*A(x)
=(A(x)-4*x-9*x^2)-5*x*(A(x)-4*x)+6*x^2*A(x)
D

(‰E•Ó)
=
ƒ°[n=1`‡]((2n-1)*x^(n+2)
=2*x^3*
ƒ°[n=1`‡](n*x^(n-1))-x^3*ƒ°[n=1`‡](x^(n-1))
=2*x^3*(d/dx)(1/(1-x))-x^3*(1/(1-x))
=2*x^3*(1/(1-x)^2)-x^3*(1/(1-x))
=(x^3+x^4)/((1-x)^2)
D

‚ć‚Á‚āC
(A(x)-4*x-9*x^2)-5*x*(A(x)-4*x)+6*x^2*A(x)=(x^3+x^4)/((1-x)^2)
D
A(x)*(1-5*x+6*x^2)=(x^3+x^4)/((1-x)^2)+4*x-11*x^2
D
A(x)=((x^3+x^4)/((1-x)^2)+4*x-11*x^2)/(1-5*x+6*x^2)
D
=1/(1-x)^2+(2/3)*(1/(1-3*x))-5/3
=
ƒ°[n=0`‡](n+1)*x^n + (2/3)*ƒ°[n=0`‡](3*x)^n - 5/3D
—ź•Ó‚Ěx^n‚ĚŒW”‚đ”äŠr‚ˇ‚é‚ą‚Ć‚É‚ć‚Á‚āC
a[n] = (n+1)+(2/3)*3^n = 2*3^(n-1)+n+1 (
“š)D

 


–â‘č 2F
A(x)=
ƒ°[n=1`‡](a[n]*x^n) ‚Ć‚ˇ‚éB
—^‚Ś‚ç‚ę‚˝‘Q‰ťŽŽ a[n+2]-5*a[n+1]+6*a[n]=2*4^n ‚ć‚čA
(A(x)-5*x-21*x^2)-5*x*(A(x)-5*x)+6*x^2*A(x)
=2*
ƒ°[n=1`‡](4^n*x^(n+2))
=2*x^2*
ƒ°[n=1`‡](4*x)^n
=2*x^2*(4*x)/(1-4*x)
D

A(x)*(1-5*x+6*x^2)=8*x^3/(1-4*x)+5*x-4*x^2D
A(x)
=(8*x^3/(1-4*x)+5*x-4*x^2)/(1-5*x+6*x^2)
=1/(1-4*x)+1/(1-3*x)-1/(1-2*x)-1
=
ƒ°[n=0`‡](4*x)^n + ƒ°[n=0`‡](3*x)^n - ƒ°[n=0`‡](2*x)^n - 1D
—ź•Ó‚Ěx^n‚ĚŒW”‚đ”äŠr‚ˇ‚é‚ą‚Ć‚É‚ć‚Á‚āC
a[n] = 4^n + 3^n - 2^n (
“š)D

ƒ…‚Ě—Ź‚ę‚Š‚灄

‚ą‚ż‚ç‚Şl‚Ś‚Ä‚˘‚˝‚Ě‚Í“š‚Ś‚ĚŒ`‚đ—\‘z‚ľ‚Ä‚Š‚ç@

–â‘č‚P‚Ĺ‚ÍA2^n+B3^n+Cn+D

–â‘č‚Q‚Ĺ‚ÍA2^n+B3^n+C4^n

‚Ć‚ľ‚āAŒă‚͏‰ŠúđŒ‚Š‚çŒW”‚đ‹‚ß‚é•ű–@‚Ĺ‚ˇB

@@@@@@@@@@@

ŠF‚ł‚ńA–â‘č‚⎿–â‚É“š‚Ś‚Ä‚­‚ž‚ł‚˘Bˆę•”‚Ĺ‚ŕ\‚˘‚Ü‚š‚ń‚Š‚çA‰đ“š‚Ćƒyƒ“ƒl[ƒ€‚đ“Y‚Ś‚āAƒ[ƒ‹‚Ĺ‘—‚Á‚Ä‚­‚ž‚ł‚˘B‘Ň‚Á‚Ä‚˘‚Ü‚ˇB