˝ŹQUNPOPXú
[ŹęŻ]
@@@@@ć312ńwIČĺđ
@@@@@@đĺWúÔF921ú`1019ú
müľ˘ô˝n
@ é~ÉÎľÄCÓ̡opĚ_đlĆľÄAąĚ_đĘé2{̡`aCbcđ}Ěć¤ÉěčܡB_`Ć_cC_aĆ_bđťęźęŃAˇopĆĚđ_đ}ĚdCeĆܡBˇéĆAdlel@ŞŹč§ÂąĆđŚľÄžł˘B
qgF_dĆ_eŠçťęźęˇ`aơbcÉüđşëľAťĚŤđ}ĚfCgChCiơéBłçÉA˘ÂŠĚČOp`ĚgđŠÂŻÄžł˘B
oWFpYĹĐçßâüĚô˝wiukĐjş`ě
uńxĐŻŘv 09/21 1033Ş@óM
XV 10/19
(Řž)
^Śçę˝qgĚć¤ÉCGCICHCJ đĆčܡD
AE*ED=(PM)^2-(EM)^2 ---(1) D
(ČşČç ˘EAQ ä ˘EPD (ŻśĘDQÉΡé~üpÍľ˘ĚĹCÚEAQ=ÚEPDD
Ü˝ θpÍľ˘ĚĹCÚAEQ=ÚPED) Ĺ éĚĹC
AEFEQ=PEFEDD ćÁÄ AE*ED=EQ*PED
ąąĹ PE=PM-EMCEQ=QM+EM=PM+EM ČĚĹC
AE*ED=EQ*PE=(PM+EM)*(PM-EM)=(PM)^2-(EM)^2D)
ŻlÉlŚÄCCF*FB=(QM)^2-(FM)^2=(PM)^2-(FM)^2
---(2)D
˘EGM ä ˘FHM ćč
EM/FM = EG/FH ---(3)D
˘EIM ä ˘FJM ćč
EM/FM = EI/FJ ---(4)D
˘EAG ä ˘FCJ ćč
EG/FJ = AE/CF ---(5)D
˘EDI ä ˘FBH ćč
EI/FH = ED/FB ---(6)D
(3)C(4)C(5)C(6)ĚÓXđŠŻíšÄC
(EM/FM)^2 = (AE*ED)/(CF*FB)D
ćÁÄC(EM)^2*(CF*FB)=(FM)^2*(AE*ED)D
ąęÉ(1)C(2)đŠÁÄC
(EM)^2*((PM)^2-(FM)^2)=(FM)^2*((PM)^2-(EM)^2)D
ćÁÄC
(PM)^2*((EM)^2-(FM)^2)=0D
ćÁÄC(EM)^2-(FM)^2=0D@ÂÜčCEM=FM
(ŘžI)
uńxĐŻŘv 10/10 2038Ş@óM
XV 10/19
ąĚâčÍuButterfly ProblemvĆÄÎęĢéCćmçę˝ô˝Ěâč
Ĺ éć¤ĹˇD
EBLyfBAÉÍuButterfly theoremvĆčľÄfÚłęĢܡD
http://en.wikipedia.org/wiki/Butterfly_theorem
ąĚâčÉÍ łÜ´ÜČđ@Ş éć¤ĹˇD
http://www.cut-the-knot.org/pythagoras/Butterfly.shtml
ČşĚ{ĹąĚâčĚĘđđÝÂŻ˝Üľ˝D
uChallenging Problems in Geometryv (DOVER PUBLICATIONS)
ąĚ{ÉÍ5SĹĘčĚđ@ŞĐîłęĢܡD
ťĚ¤żĚĐĆÂÍĚć¤ČŕĚšD
(Ęđ)
(_BĆźüPQĆĚŁ)(_DĆźüPQĆĚŁ)
ĆČÁĢéęđlŚéD
_BđĘčCȨŠÂźüPQÉ˝sČźüŞąĚ~ĆđíéBČOĚ_đKơéD
_MŠçźüBKÉşëľ˝üĚŤđNơéD
ąĚĆŤC˘MEKߢMFB ĆČéąĆŞÂŹĚć¤ÉľÄŚšéD
MB=MK Ĺ éD
(źüMNÍüŞBKĚźńŞüĹ éąĆŞŚšéĚĹ MB=MK Ş˘Śé)
ÚEMK=ÚFMB Ĺ éD
(PQ//BKČĚĹ ÚEMK=ÚMKBCÚMBK=ÚFMBD˘MBKÍMB=MKČéńÓOp`ČĚĹ
ÚMBK=ÚMKBDąęçćč ÚEMK=ÚFMB)
ÚEKM=ÚFBM Ĺ éD
(ĘACÉΡé~üpÍľ˘ĚĹ ÚFBM=ÚEDMD---(1)
ĘAKÉΡé~üpÍľ˘ĚĹ ÚKDE=ÚKBMD---(2)
Ü˝CÚKBM=ÚBKM=ÚEMKDąęĆ(2)ĆŠçCÚKDE=ÚEMKD
ćÁÄ~üpĚčĚtćč 4_ KCDCMCE ÍŻę~üăÉ éąĆŞíŠéD
ćÁÄ ÚEKM=ÚEDMDąęĆ(1)ĆŠç ÚEKM=ÚFBM )
ćÁÄ ˘MEKߢMFB (ńpńÓ)D
ćÁÄ EM=FMD(I)
uuchinyanv
09/21 1417Ş@óM XV 10/19
(Řž1)@qgÉîâÄlŚ˝Řž
ܸC˘EMG ä
˘FMH ćčCEM/FM = EG/FHC˘EMI ä
˘FMJ ćčCEM/FM = EI/FJCČĚĹC
EM^2/FM^2
= EG/FH * EI/FJ = EG/FJ * EI/FHCšB
ÉCÚDAB =
ÚBCDCÚADC = ÚCBA ŠçC
˘EAG ä ˘FCJ ćčCEG/FJ = EA/FCC˘EDI ä ˘FBH ćčCEI/FH = ED/FBCČĚĹC
EM^2/FM^2
= EG/FJ * EI/FH = EA/FC * ED/FB = (EA * ED)/(FC * FB)CšB
ťąĹCű׍ĚčđgÁÄC
EM^2/FM^2
= (EA * ED)/(FC * FB) = (EP * EQ)/(FP * FQ)
ąąĹCPM = QM ÉÓˇéĆC
EP = PM -
EMCEQ = QM + EM = PM + EMCFP = PM
+ FMCFQ = QM - FM = PM - FM
Ş˘ŚéĚĹC
EP * EQ =
(PM - EM)(PM + EM) = PM^2 - EM^2CFP * FQ = (PM + FM)(PM -
FM) = PM^2 - FM^2
ĆČÁÄC
EM^2/FM^2
= (EP * EQ)/(FP * FQ) = (PM^2 - EM^2)/(PM^2 - FM^2)
ŞęđĽÁÄŽˇéĆC
EM^2 *
(PM^2 - FM^2) = FM^2 * (PM^2 - EM^2)
EM^2 *
PM^2 - EM^2 * FM^2 = FM^2 * PM^2 - FM^2 * EM^2
EM^2 *
PM^2 = FM^2 * PM^2
EM^2 =
FM^2
EM = FM
ÉČčܡB
(Řž2)@PÉŔWđp˘˝Řž
ÎĚŤđlśľÄCM(0,0)CP(-p,0)CQ(p,0)C~ĚSđ
(0,o)CĆŔWđüęܡB
ˇéĆC~ĚűöŽÍCx^2
+ (y - o)^2 = o^2 + p^2CšB
łçÉCABCCD ĚŽđCy = mxCy = nxCA(a,ma)CB(b,mb)CC(c,nc)CD(d,nd)CƾܡB
ˇéĆCE(e,0)CF(f,0) ĆľÄC
AD ĚŽCy - ma = (nd - ma)/(d - a) * (x - a)Ce = a -
ma(d - a)/(nd - ma)
CB ĚŽCy - nc = (mb - nc)/(b - c) * (x - c)Cf = c -
nc(b - c)/(mb - nc)
ąąĹCaCbCcCd Í~Ć ABCCD Ěđ_ČĚĹC
aCb ÍC(m^2 + 1)x^2 - 2mox - p^2 = 0CĚđĹCđĆWĚÖWŠçC
a + b =
2mo/(m^2 + 1)Cab = - p^2/(m^2 + 1)
cCd ÍC(n^2 + 1)x^2 - 2nox - p^2 = 0CĚđĹCđĆWĚÖWŠçC
c + d =
2no/(n^2 + 1)Ccd = - p^2/(n^2 + 1)C
ČăĚÝčĹCEM =
-eCFM = f ČĚĹCEM = FM đŚˇÉÍCe + f = 0CđŚšÎ˘˘ĹˇB
e = a -
ma(d - a)/(nd - ma) = (n - m)ad/(nd - ma)
f = c -
nc(b - c)/(mb - nc) = (m - n)bc/(mb - nc)
e + f = (n
- m)ad/(nd - ma) + (m - n)bc/(mb - nc)
= (m -
n)(ad(mb - nc) + bc(ma - nd))/((ma - nd)(mb - nc))
= (m -
n)(mab(c + d) - ncd(a + b))/((ma - nd)(mb - nc))
= (m -
n)(m(- p^2/(m^2 + 1))(2no/(n^2 + 1)) - n(- p^2/(n^2 + 1))(2mo/(m^2 + 1)))/((ma
- nd)(mb - nc))
= (m -
n)(- 2mnop^2/((m^2 + 1)(n^2 + 1)) + 2mnop^2/((m^2 + 1)(n^2 + 1)))/((ma - nd)(mb
- nc))
= (m -
n)(0)/((ma - nd)(mb - nc))
= 0
ťąĹCEM = FMCŞŚšÜľ˝B
(´z)
qgŞ Á˝ľ}ŕťęđOńÉľ˝ŕĚČĚĹCťęÉîâÄlŚ˝ŘžŞ(Řž1)šB
ožľŠçű׍Ěčđg¤ÜĹÍťąťąŤę˘ČĚšŞCťĚ㪤ܢŠ¸C
ăźÍvZĺĚÉČÁľܢܾ˝BŻŞÇąŠĹ˘ŚČ˘ŠČCĆvÁ˝ĚšŞB
žŻĹľÄ˘ľŠČ˘ĆˇéĆCvZŞđŠˇĚÍdűŞČ˘ĚŠŕmęÜšńB
ČçÎCĆčŘÁÄCŔWđp˘ĹŠçvZĺĚÉľ˝ĚŞ(Řž2)šB
vZŠĚÍṥGÉČčܡŞCâéąĆÍžmĹŠĘľŕćCvZĘŕĺľ˝ąĆÍȢĚĹC
ąĚâčĹÍşčÉô˝ÉąžíçȢűŞ˘˘ŠŕmęÜšńËB
ȨC(Řž1)ĚĹăĚÓčÍÁäĚđgŚÎC
EM^2/FM^2
= (EP * EQ)/(FP * FQ) = (PM^2 - EM^2)/(PM^2 - FM^2) = PM^2/PM^2 = 1
EM^2 =
FM^2
EM = FM
ĆŕōܡËBÜC ÜčbgÍȢšŞB
uNŤĚ¨śłńv 10/02 2059Ş@óM
XV 10/19
ťĚ1
}Ěć¤ÉAMŞ´_ĹPQŞX˛ăÉéć¤ÉŔWđĆčܡB
MAĆX˛ĆŞŹˇpđżAMCĆX˛ĆŞŹˇpđŔA~ĚźađrASĆMĆĚŁđbƾܡB
ˇéĆA~AźüABAźüCDÍťęźęĚć¤É\łęܡB
(˛)Ć(Ű)đA§łšÄA_AABĚŔWđßéĆA
ŻlÉA(˛)Ć(Ę)đA§łšÄA_CADĚŔWđßéĆA
ŽŞˇČéĚĹąĚăA
ƨąĆɾܡB
źüADAźüCBĚŽđ˛×ܡB
ADĚXŤmÍA
_DđĘéĆľÄAźüADÍA
CBĚXŤnÍA
_CđĘéĆľÄAźüCBÍA
_EAFĚXŔWđ˛×ܡB
EĚXŔWÍA(Ć)Ěyđ0ÉľÄA
ĘŞľ˝ŞqžŻđŤoˇĆA
ćÁÄEĚXŔWÍA
FĚXŔWÍA(Î)Ěyđ0ÉľÄA
ĘŞľ˝ŞqžŻđŤoˇĆA
ćÁÄFĚXŔWÍA
EM=FMƢ¤ąĆÍAMŞ´_ČĚĹAăĚXŔWĚaŞ0ÉČéƢ¤ąĆšB
XŔWĚaĚvZĚĘŞľ˝ŞqžŻđŤžˇĆAi˝žľA¤ĘĚöq j
ťĚ2
Ą}Ěć¤ÉÚAMEżAÚCMFŔƨŤÜˇB
˘AMD˘AME{˘EMDČĚĹA
ćÁÄA
˘CMB˘CMF+˘FMBČĚĹA
ćÁÄA
ČăŠçA
ĄąąĹAăĚ}ŞťĚ1ĚŔWĆŻśĘuÉ Á˝ĆľÜˇB
âpĚÖWÉ é2ÂĚpĚłˇiSINjÍľ˘ĚĹAťĚPĚ_AABACADĚŔWđťĚÜÜg˘ÜˇB
ŻlÉA
ĄMEMFƢ¤ąĆÍAťĚäŞ1ÉČéƢ¤ąĆšB
ăĚĘđiÍjÉăüˇéĆA
ťĚ3
Ł}Ěć¤ÉAPMQMpAEMeAEGgAEIiAFMfAFJjAFHhƨŤÜˇB
˘MEGä˘MFHČĚĹeFgfFhćčA ĽĽĽ(Ä)
˘AEGä˘CFJČĚĹAgFAEjFCFćčA ĽĽĽ(Á)
˘MEIä˘MFJČĚĹAeFifFjćčA ĽĽĽ(Ř)
˘DEIä˘BFHČĚĹAiFEDhFFBćčA ĽĽĽ(Ç)
ADĆPQÉű׍Ěčđ ÄÍßÄA ĽĽĽ(Ů)
CBĆQPÉű׍Ěčđ ÄÍßÄA ĽĽĽ(Ś)
ŁČăŠçEMĆFMĚäĚlđvZľÜˇB
ŞqÉÍA(Ä)A(Á)đăüľŽľÄŠç(Ů)đăüľÜˇB
ŞęÉÍA(Ř)A(Ç)đăüľŽľÄŠç(Ś)đăüľÜˇB
¨ÜŻ
ąĚâčÍᄁšB
ȺᄁŠĆ˘¤ĆA ĚĆŤA šŞAČPȤĘöŞČ˘ŠçšB
iśÓĆEÓŞđăŽĚÖWÉČÁĢܚńj
EĚXŔWÍA
FĚXŔWÍA
Ě`đľÄ˘ÜˇB
Ĺ éąĆđABCĚWJŞADĹ éąĆĹmFľÜˇB
ąĚ ˝čĚďľłŞťĚ3ĚEMĆFMĚäĚvZĚĆąëÉoĢܡB
ĘĹÍâçȢŽĎ`đľÄ˘ÜˇB
<RgĄńĚâčÍᄁšB
đĚťĚ1ÍfźČlŚűšB
]vČąĆđlŚČŻęÎvZłŚŞCćâęÎōܡB
ľŠľAMEĆMFĚlŞđăŽÉČé͸žĆvÁľܤĆČŠČŠ˛ŻçęÜšńB
ťąŠç˛ŻéĚÉľÎ犊čÜľ˝B
ťĚ2Íô˝IÉđą¤ĆľÄű׍Ěčâçg~[ĚčâçąËčÜíľÄÝÜľ˝Ş¤Ü˘ŤÜšńĹľ˝B
˘
MGJƢMIHŞ˘ŚęΡŽČĚĹˇŞ¤Ü˘ŤÜšńĹľ˝B
dűČMEĆMFĚlđČńĆŠąśÂŻÄĚvZɾܾ˝B
ťĚ3ÍqgÉŔÉAÉÍŔÉlŚÄąśÂŻÜľ˝B
l ťĚ1ĹĘĚ´oĹÍōȢąĆŞŞŠÁĢ˝ĚŢíäéŘĚŤ˘âčűĹâÁÄÝ˝çĹŤÄľÜÁ˝AƢ¤´śĹˇB
iĘĚłU@ĹĹŤéĚŠźĚlĚđđyľÝɾĢܡj
ulcž¤
10/07 1717Ş@óM XV 10/19
ŔWnđąüˇéDiô˝wIČŤę˘ČŘžÍDŤĹȢĚĹj
@ąĚ~ĚSđn(OCO)CźađPĆľC
@@l(OC)iO
Pj
@@o(|(P|Q)P^QC)Cp((P|Q)P^QC)
@@`(C)Cb(C)
@@|(P|Q)P^Q(P|Q)P^QC
PC
PCQ{QPCQ{QP
ơéD
i). OĚĆŤC
@źü`lĚűöŽÍC
@@i|j^(|O)E(|O){(|)^E{
@aĚŔWđßéD
@@Q{{(|)^E{}QP
ćčC
@@{Q{(|)Q}Q{Q(|){Q(Q|P)O
@@(P|Q{Q)Q{Q(|){Q(Q|P)OićQ{QPj
@@Q{Q(|)^(P|Q{Q)E{Q(Q|P)^(P|Q{Q)O
@đĚPÂÍC`ĚŔWĚĹ éĚĹCźĚđĹ éaĚŔWÍC
@@(Q|P)^(P|Q{Q)
@aĚŔWÍC
@@(|)^E(Q|P)^(P|Q{Q){(|)(Q|P)^(P|Q{Q){
@@a((Q|P)^(P|Q{Q)C(|)(Q|P)^(P|Q{Q){)
@b(C)ćčCŻlÉC
@@c((Q|P)^(P|Q{Q)C(|)(Q|P)^(P|Q{Q){)
@źü`cĚűöŽÍC
@@[{(|)(Q|P)^(P|Q{Q){}|]^{(Q|P)^(P|Q{Q)|}E(|)
@@@@@{
@ĚWÍC
@@{(|)(Q|P){(|)(P|Q{Q)}^{(Q|P)|(P|Q{Q)}
@{|({)Q{Q(P{)|({)}^{(|)Q{Q|({)}
@dĚŔWđßéD
@@{|({)Q{Q(P{)|({)}^{(|)Q{Q|({)}E(|){
ćčC
@@(|)^[{|({)Q{Q(P{)|({)}^{(|)Q{Q|({)}]
@@@(|){(|)Q{Q|({)}^{|({)Q{Q(P{)|({)}{
@@@{(|)R{(Q|{)Q|({{Q){({)}
@@@@@^{|({)Q{Q(P{)|({)}{
@eĚŔWÍCŻlÉC
@@{(|)R{(Q|{)Q|({{Q){({)}
@@@^{|({)Q{Q(P{)|({)}{
@@(dĚŔW){(eĚŔW)
@@{(|)R{(Q|{)Q|({{Q){({)}
@@@@^{|({)Q{Q(P{)|({)}{
@@@@{{(|)R{(Q|{)Q|({{Q){({)}
@@@@@^{|({)Q{Q(P{)|({)}{
@@[({{{)Q|Q{{{({)}{({{{)]
@@@@^{|({)Q{Q(P{)|({)}{({)
@@({)E[{({)Q|Q(P{){({)}
@@@@@@@@@^{|({)Q{Q(P{)|({)}{P]
@@O(lĚŔW)
@@dlel
ii). OĚĆŤC`(OCP)Ca(OC|P)Cb(C)
@@O(P|Q)P^QCP
@i)ĆŻlÉC
@@c((Q|P)^(P|Q{Q)C(|)(Q|P)^(P|Q{Q){)
@źü`cĚűöŽÍC
@@[{(|)(Q|P)^(P|Q{Q){}|P]^{(Q|P)^(P|Q{Q)|O}E(|O){P
@ĚWÍC
@@{(|)(Q|P){(|P)(P|Q{Q)}^{(Q|P)}
@{|({P)Q{Q(P{)|({P)}^{(Q|P)}
@|({P)(Q|Q{P)^{(Q|P)}
@|({P)(|P)^{({P)}
@@`cF({P)(P|)^{({P)}E{P
@dĚŔWđßéD
@({P)(P|)^{({P)}E{PćčC
@@(|P)^[({P)(P|)^{({P)}]|({P)^({P)
@źüabĚűöŽÍC
@@{|(|P)}^(|O)E(|O)|P({P)^E|P
@eĚŔWđßéD
@({P)^E|PćčC
@@({P)^{({P)^}({P)^({P)|(dĚŔW)
@@dlel
iii). OĚĆŤŕCii)ĆŻlD
@i)`iii)ćčCdlel