ßaTNWPRú
[ŹęŻ]
@@ć429ńwIČAąĺđ
@@@@đĺWúÔFV23ú`W20ú
mOpÖn
âč

ÇÁâčPiočŇÍuW[J[vj
ć417ńŠçĚułOp`ĚÓâ~ĘÉćÁÄÍÜę˝}`ŕĚS~v
V[YĚć10âÚŞĹăĚâčšB

ÇÁâčQiočŇÍuW[J[vj
@ć427ńŠçĚumŚvĚâčV[YĚRâÚšB
@`CaCbĚ3lŞPÂĚł˘ąëđ`abba`b`abba`b`abba`b`EEEĚɰÄ, ĹÉ1ĚÚđoľ˝lđżĆˇéB
@`CaCbŞÂmŚđťęźęßćB
NO1uW[J[v @07/23 @@
1620Ş óM XV 8/13
uW[J[v @ 07/24 @@
0341Ş óM XV 8/13
uW[J[v @ 07/25 @@
1121Ş óM XV 8/13
uW[J[v @ 07/26 @@
2203Ş óM XV 8/13
uW[J[v @ 07/31 @@
2248Ş óM XV 8/13
ČăĚúÉđđńšçęÜľ˝BĄńąęçđÜĆßĊ⡾ܾ˝Bńšçę˝âčĚđš
NOQuX[N}v 07/2V 1348Ş@ óM XV 8/13
(1)
(sin(x)+2sin(y))/(cos(x)+2cos(y)+6)
f(x)=sin(x)/(cos(x)+2)ơéĆ
^Ž=f(x)@ĆŻś
ff(x)=(sin^2(x)+cos^2(x)+2cos(x))/(cos(x)+2)^2
=0
2cos(x)=-1
Socx=2Î/3
Soc
Max{f(x)}=(ă3/2)/(-1/2+2)=ă3/3
(2)
(4sinĆ+2cosĆ+5)/(cosĆ+sinĆ+1)
ČşĚć¤ÉuĆA
tan(Ć/2)=tc-Î/4<Ć<Î/2c-1<t<♾️
cosĆ=(1-t^2)/(1+t^2)
sinĆ=2t/(1+t^2)
^Ž=(3t^2+8t+7)/(2t+2)
((3t^2+8t+7)/(2t+2))f=(3t^2+6t+1)/(2(t+1)^2)
3t^2+6t+1=0
t=(-3-ă6)/3, (-3+ă6)/3
ăŇĚĆŤA
^Ž=(2t+6)/(2t+2)=(t+3)/(t+1)=6+ă6)/ă6=1+ă6
Soc
Min{^Ž}=1+ă6=3.449c
ÇÁâč1(Gn)

ĚŹęF6
ŕ éĹľ˝ŞA4~ĚźaĚÍłđšB
ÉÍĆÄŕvZŞĹŤÜšńBŞCŞąŤÜšńB
X[N}łńĚvZÍÉ´Ěčš
uX[N}v 08/01
2255Ş@ óM XV 8/13
ÇÁâčQ
A,B,CĚÂmŚđťęźę
P(A),P(B),P(C)ơéĆA
P(A)=(1/6)(1+(5/6)^5)*(1/(1-(5/6)^6)
=(6^5+5^5)/(6^6-5^6)
=10901/31031
=991/2821 =0.3512c
P(B)=(1/6)((5/6)+(5/6)^4)*(1/(1-(5/6)^6)
=(5*6^4+6*5^4)/(6^6-5^6)
=10230/31031
=30/91 =0.3296c
P(C)=1-991/2821-30/91=900/2821 =0.3190c
P(A)>P(B)>P(C)
żČÝÉA
ABCĚÔĚęc
P(A)+P(B)+P(C)=1
P(B)=(5/6)P(A)
P(C)=(5/6)^2P(A)
Soc
P(A)(1+5/6+(5/6)^2)=1
P(A)=6^2/(6^2+6*5+5^2)=36/91
P(B)=30/91
P(C)=25/91
ĚŹęFđđĎŚÄĚl@ čŞĆ¤˛´˘ÜˇB
NO3ukasamav
07/30
0040Ş@ óM XV 8/13
@ńšçę˝âčĚđš
ukasamav
07/30
2304Ş@ óM XV 8/13
OńĚđÉęůłđłęÜľ˝BşLÉÜĆßÄ čܡB
ukasamav
08/03 2236Ş@ óM XV 8/13
OńĚůłŕeĆĄĚĘđš
NO4ućÓŠľĚÂ碨śłńv8/12 0533Ş óM XV 8/13
ĄńĚâčĚqgÍAuočÍAZZĺwiśnjĚßâüčvĹľ˝B
(1)
![]()
ąĚć¤ÉĎ`ˇéĆAąĚŽÍ2_
đÔźüĚXŤĹˇB
_
Ć_
ĆÍA´_ÎĚĚÖWÉ čܡB

ąĚźüĚXŤĚĹĺÍA}ĚÔĚęšB
˘OAfCeä˘QBfCfĹAĚäÍA1F2šB
ćÁÄA_CfĚŔWÍ2šB
_
đĘčAXŤĚźüÍA![]()
ąĚźüĆ´_ĆĚŁÍ1ČĚĹA
![]()
![]()
ćÁÄAĹĺlÍA
šB
(2)

ąąĹAŞęđĎ`ľÜˇB
![]()
łçÉAŞęđÝÄAŞqđĎ`ľÜˇB
![]()
![]()
ćÁÄA()ÍA
![]()
![]()
![]()
ąąĹA
FĚŞÍA´_SĹźa
Ě~üăĚ_aĆ_
đÔźüĚXŤĹˇB
ĆŞA![]()
ĚÍÍĹlŚęÎ梹ĆÉČčܡB

ąĚźüĚXŤĚĹŹÍA}ĚÔĚęšB
_
đĘčAXŤĚźüÍA![]()
ąĚźüĆ´_ĆĚŁÍ
ČĚĹA
![]()
![]()
ćÁÄA(##)ÍA
![]()
ćÁÄAĹŹlÍA
šB
ÇÁâč1
_BŞ´_A_CŞ˛Éćéć¤É}đzuľÜˇB

e~ĚźaĆSĚŔWđĚć¤ÉľÜˇB
bFĆ
AłFĆ
A¸FĆ
AFĆ![]()
~bĚźađßܡB
źpOp`CKLćčA
![]()
źpOp`KNPćčA
![]()
(1)A(2)ćčA
![]()
ąęđ(1)ÉüęéĆA
![]()
(0ćč)

ąęđĚŽÉüęéĆA

~łĚźađßܡB
źpOp`NSMćčA
![]()
źpOp`CSRćčA
![]()
WJľÄAi3jŠçi4jđřĆA
![]()
ąęđ(3)ÉüęÄAĹŽˇéĆA
![]()
ąąĹAĚ]żđľÜˇB
}ŠçÍ0.1öxČĚĹAľÉ
đăüľÄÝéĆA

ÍłČĚĹAu+vĚęđp˘ÜˇB
![]()
ąęđ(5)ÉüęÄŽˇéĆA
![]()
źpOp`SKQćčA
![]()
![]()

vZˇéĆA¤ęľ˘ąĆÉA
ĚWŞ0ÉČčܡB
![]()
2ćľÄAގéĆA
![]()

ŞęđLťˇéĆA
![]()





ąęđ
Ě`Éľ˝˘ĚĹA
![]()
ąęđđ˘ÄA(˝ÎĹ௜š)
![]()
äŚÉA(7)ÍA
![]()
![]()

ćÁÄA
![]()
šB
~¸ĚźađßܡB
źpOp`CHUćčA
![]()
ČĚĹăĚŽÉăüˇéĆA
![]()
![]()
ąęÉA
A
đüęÄAގéĆA
![]()
É¢ÄđĆA

ćčA
![]()
![]()

![]()
2ćľÄA

![]()
![]()
![]()
~ĚźađßܡB

źpOp`TNVćčA
![]()
źpOp`TKWćčA
![]()
(8)Ć(9)ćčA

(10)ÉAĆđăüľÄAގéĆA

![]()
ąęđ(8)ÉăüˇéĆA


ąęđđĆA


![]()
2dŞĚŞđ
Ě`Éľ˝˘ĚĹA

ąęđđ˘ÄA(˝ÎĹ௜š)
![]()
äŚÉA
![]()
ćÁÄA
![]()

ćÁÄ}CiXĚĆŤđż˘ÜˇB
ćÁÄ~ĚźaÍA

![]()
ÇÁâč2
AŞÂęÍA(1ńÚE6ńÚ)A(7ńÚE12ńÚ)AĽĽĽA(1+6(|1)ńÚE6+6(|1)ńÚ)AĽĽĽ
aŞÂęÍA(2ńÚE5ńÚ)A(8ńÚE11ńÚ)AĽĽĽA(2+6(|1)ńÚE5+6(|1)ńÚ)AĽĽĽ
bŞÂęÍA(3ńÚE4ńÚ)A(9ńÚE10ńÚ)AĽĽĽA(3+6(|1)ńÚE4+6(|1)ńÚ)AĽĽĽ
ÉNąčܡB
ťęźęĚmŚđvľÄ˘ĆA



ťęźęĚmŚđOźĆăźÉŞŻÄŤľÄ˘ŤÜˇB
OźĆăźÉŞŻéĆAťęźęłŔäĚaÉČčܡB
`ĚÂmŚÍA


BĚÂmŚÍA


CĚÂmŚÍA


OĚ˝ßÉmŚđvˇéĆA


![]()
u
ĚŹęv @@@@@@@@@@@@@@@@@ XV 8/13
đ


