ßaTNS28ú
[ŹęŻ]
@@ć424ńwIČAąĺđ
@@@@đĺWúÔFRTú`SQú
mĹŹlEĹĺln
ÇÁâčuW[J[vłńń
ć417ńŠçĚułOp`ĚÓâ~ĘÉćÁÄÍÜę˝}`ŕĚS~v
V[YÍxܚĢ˝žŤÜˇB
NO1uW[J[v @03/05 @@
1154Ş óM XV 4/2
ńšçę˝âčĚđš
uW[J[v @03/05 @@
2046Ş óM XV 4/2
ńšçę˝âčQĚĘđšB
NO2ukasamav
03/12
2346Ş@ óM XV 4/2
ńšçę˝âčĚđš
ukasamav
03/17
1813Ş@ óM XV 4/2
@
âčPĚiRj@yâŤz2023/03/17ÇL
XŤmĚZoÍAöŽi~ĚÚüĚűöŽjđgŚÎAŕÁĆČPÉßçęܡB
~@ăĚ_ĚÚüÍŽĹ\łęܡB
ˇéĆAŞ~@ăĚ_Ĺ éąĆĆAÚüŞč_đĘéąĆćčA
ąęçđđĆA
ČĚĹAXŤmÍ
šB
(3)_A_đxNgAĆľ˝ĆŤAŕĎŞĹ éąĆÉCtŻÎAˇńČčđŻéĆv˘ÜˇB
|
}Ěć¤ÉAAĚȡpđĆơéĆA šBˇéĆAAAČĚĹAĚĹŹlEĹĺlÍş}Ěć¤ÉČčܡB |
|
|
~AĚźaÍ3ČĚĹA ~@ĚźaÍ10ČĚĹA |
~AĚźaÍ3ČĚĹA ~@ĚźaÍ10ČĚĹA |
ćÁÄAßéĹŹlEĹĺlÍťęźęČşĚĘčšB
ĚĆŤ-70
ĚĆŤ70
âčQ@yĘđz2023/03/17ÇL
AŞźa1Ě~üăĚ_Ĺ éąĆÉCtŻÎA~ĆÚüĚâčÉA
ōܡBAƨŻÎAâčPĚ(2)ĆŮÚŻśĹˇB
|
Ë Ć¨ŚÄAč_Šç~Ěź~üăÉř˘˝źüĚXŤđlŚęÎć˘ĚšBXŤĚĹŹlÍžçŠÉÎFĚźüČĚĹ1šBĹĺlÍÔFĚźüšŞAĚć¤ÉľÄßéąĆŞĹŤÜˇB |
~üăĚ_ĚÚüÍŽĹ\łęܡB
ˇéĆAŞ~ăĚ_Ĺ éąĆĆAÚüŞč_đĘéąĆćčA
ĽĽĽ@
ĽĽĽA
ąęçđĚÍÍŕĹđĆA
šBˇéĆAXŤmÍ
šBČăćčAßéĹŹlEĹĺlÍťęźę1AšB
âčRiPjyĘđz2023/03/17ÇL
ĆđČüĆŠęÎ÷ŞĹâéű@ČOÍŠÎȢĚšŞA2_Ô̡łđ\ťľÄ˘éąĆÉCtŻÎÄOČPĹľ˝B^Žđ
ĆĎ`ˇęÎAťęźę_Ć_̡łA_Ć_̡łĆŠ§ÄéąĆŞĹŤÜˇB
|
ś}ĚĘčA^ŽÍÔüĆIWüđŤľíš˝źüABC̡łĆlŚéąĆŞĹŤÜˇB |
üŞABCŞĹŕZČéĚÍA_AABACŞęźüăÉ éƍšB
|
}Ĺ_CđßéĚŞČPžĆv˘ÜˇB źüABÍA Ë ČĚĹAx˛ĆĚđ_ÍšBęűAAB̡łÍ šB |
ČăćčAĹĹŹlđĆčܡB
âčRiQjyĘđz2023/03/17ÇL
(1)ĆŻść¤ÉâęÎAÎ÷ŞÝ˝˘ČĺçëđUéíČĆŕwĚwĹđŻÜˇËB^Žđč_Šç̡łĆŠ§ÄÄA
ĆĎ`ľÜˇBÂÜčAâčśÍËËËĆHÁ˝ĆŤĚoHĚĹŹlĆÇÝÖŚéąĆŞĹŤÜˇB
|
}ŚˇéĆAś}Ěć¤ÉČčܡB ÖXăA_AABACADƾܡB |
üŞABCDŞĹŕZČéĚÍA_AABACADŞęźüăÉ éƍšB
|
}ĹâéĚŞČPžĆv˘ÜˇB źüADÍA Ë ČĚĹAx˛ĆĚđ_ÍAy˛ĆĚđ_ÍšBęűAAD̡łÍ šB |
ČăćčAĚĆŤAĹŹlÍšB
âčRiRjyĘđz2023/03/17ÇL
W[J[łńĚIWiâčĹćčgÝÜľ˝B
î{IÉÍ(1)ĆŻść¤ÉâęÎǢĚšŞAľHvˇęÎvZŞyÉČčܡBÍy˛ÉÖľÄÎŰČĚĹĚćĹâęÎǢšiKvČçAĚćĚĘđ~[ˇęÎǢjBÜ˝AˇłđĎŚČŻęÎAKČϡ(Ż^Ę)đ{ľÄŕ\˘ÜšńŠçAĹÜčԾܡB
ąĚđßŢĆAâčśÍw2č_AÉÎľÄAăÉ_PđĆéBĚĹŹlĆťĚĆŤĚ_PĚxŔWđßćxĆÇÝÖŚéąĆŞĹŤÜˇB
_ơéĆA
ČĚĹAĚĹŹlÍ_ËËđHÁ˝ĆŤAťĚoHĚĹŹlđßéĚĆŻśĹˇB
|
đđlśľÄ}đĆAĺćťE}Ěć¤ÉČčܡBťľÄAˇłđĎŚČŻęÎSđKÉÚŽľÄŕ\˘ÜšńŠçAÍx˛ĹÜčÔľ˝_ĹlŚÜˇB |
üŞSfXEŞĹŕZČéĚÍA_SfAXAEŞęźüăÉ éƍšB
|
źüSfEÍA Ë ČĚĹAx˛ĆĚđ_ÍšBęűASfE̡łÍ šB |
ČăćčAłĚâčśÉßľÄ\ťˇéĆAĚĹŹlÍĹA_PĚyŔWÍšB
ăŽÉAđăüęéĆAČşĚĘčšB
ĚĹŹl=
_PĚyŔW=
NO3uX[N}v 03/08
2222Ş@ óM XV 4/2
(1)
(11)
(x-3)^2+(y-4)^2=4
x^2+y^2+2x-2y
=(x-3)^2+(y-4)^2+6x+8y-9-16+2x-2y
=8x+6y-21=k
Soc~ĚSŠçąĚźüÜĹĚŁ
|24+24-21-k|/ă(8^2+6^2)=2
|27-k|=20
k=7 or 47
soc
Max=47, Min=7
(12)
(y-1)/(x+1)
x-3=2cosĆ-4
y-4=2sinĆ
(y-1)/(x+1)=(2sinĆ+3)/(2cosĆ+4)
((2sinĆ+3)/(2cosĆ+4))f
=(3sinĆ+4cosĆ+2)/(2(cosĆ+2)^2
=(5sin(Ć+ż)+2) /(2(cosĆ+2)^2
3sinĆ+4cosĆ=-2
sin^2Ć+cos^2Ć=1
3y+4x=-2
x^2+y^2=1
x=cosĆ=(-1/25)(8}3ă21)
y=sinĆ=(1/25)(-6}4ă21)
soc
(y-1)/(x+1)
=(2sinĆ+3)/(2cosĆ+4)
=(2*(1/25)(-6+4ă21)+3)/(2*(-1/25)(8+3ă21)+4)=(1/6)(6+ă21)EEEMax
=(2*(1/25)(-6-4ă21)+3)/(2*(-1/25)(8-3ă21)+4)=(1/6)(6-ă21)EEEMin
(13)@
ac+bd
(a,b)=(2cosż+3,2sinż+4)
(c,d)=(cosŔ,sinŔ)
ac+bd
=(2cosż+3)*cosŔ+(2sinż+4)*sinŔ
=2(cosż*cosŔ+sinż*sinŔ)+3cosŔ+4sinŔ
=2cos(ż+Ŕ)+5*sin(Ŕ+Á)
=2cos(Ŕ+Á)+5sin(Ŕ+Á)
=ă29*sin(Ŕ+Â)
Soc
Max=ă29
Min=-ă29
ĚŹęF(c,d)=(POcosŔ,POsinŔ)šBŹŞĹŤéĚHB
(2)
((sinĆ+3)/(cosĆ+2))f=(3sinĆ+2cosĆ+1)/(cosĆ+2)^2
Soc
3sinĆ+2cosĆ=-1
3y+2x=-1
x^2+y^2=1
x=(1/13)(-2}6ă3)
y=(-1/13)(3}4ă3)
soc
(y+3)/(x+2)
=((-1/13)(3+4ă3)+3)/( (1/13)(-2+6ă3)+2)=(2/3)(3-ă3)EEEMin
=((-1/13)(3-4ă3)+3)/( (1/13)(-2-6ă3)+2)=(2/3)(3+ă3)EEEMax
ĚŹęFO
Ć
ÎƧŔŞ čܡ
(3)
(31)
ă(x^2+4x+8)+ă(x^2-6x+10)
=ă((x+2)^2+4)+ă((x-3)^2+1)
(-2,2),(3,1)ĚÔĚŁČĚĹc
(3+2)^2+(1-2)^2=5^2+1=26
SocMin=ă26
ĚŹęFÉľ˘@(-2,2),(3,\1)ĚỘš
(32)
ă(x^2-6x+13)+ă(x^2+y^2)+ă(y^2-8y+17)
=ă((x-3)^2+4)+ă(x^2+y^2)+ă((y-4)^2+1)
(x-3)^2+4=x^2+y^2=(y-4)^2+1
(x-3)^2+4=(x-3)^2+(y-4)^2+6(x-3)+8(y-4)+25=(y-4)^2+1
X^2+4=X^2+Y^2+6X+8Y+25=Y^2-1=t
2t-5+6X+8Y+25=t
t=-6X-8Y-20
soc
X^2+Y^2+5=-2(6X+8Y+20)
X^2+12X+Y^2+16Y=-45
(X+6)^2+(Y+8)^2=36+64-45=55
(-6.-8) ŠçA6X+8Y+20+t=0 ÖĚŁŞă55
|-36-64+20+t|/ă(6^2+8^2)<=1
-10<=-80+t<=10
70<=t<=90
Min{t}=70
Soc
Min{^Ž}=3ă70
ĚŹęFlŚűŞH
(33)
(p,p^2), (0,17/4),(0,5/4)
ă(p^2+(p^2-17/4)^2)+ă(p^2+(p^2-5/4)^2)
Soc
(0,17/4)Ć(2p,5/4) đĘéźü
y-17/4=(-3/(2p))*x
Ş(p,p^2)đĘé
p^2-17/4=-3/2
p^2=11/4
soc
(0,17/4)Ć(ă11,5/4)ĆĚŁ
=ă(11+3^2)
=2ă5
ĚŹęFlŚűŞH
uX[N}v 03/13
1432Ş@ óM XV 4/2
Älľ˝ŕĚš...Orz
(13)
ac+bd
=(a,b)(c,d)codĆ
=ă(a^2+b^2)*ă(c^2+d^2)*cosĆ
=2*10sinĆ
}đ`˘ÄÝéĆc
2ÂĚ~üăĚ_ÜĹĚxNgĚűüŞ˝ÎÉČéąĆÍČAš˘ş˘źÜĹ
Soc
Max=ă20
Min=0
ĚŹęFźa10Ě~ĚęÍć3ŰŔÜĹlŚÄ˘ÜˇŠç˝Îŕ čܡBPiaAbj,piAjĆľÄAxNgnoĚ即Í@xNgnpĚ即đlŚÄ
(2)
(sinĆ+3)/(sinĆ+2)
(-2,-3)Ćx^2+y^2=1 ăĚ_đńžźüĚXŤ :m
ť¤ČéĆA(-2,-3)Šç ~ÖĚÚüĚXŤťĚŕĚ
ÚüFy+3=m(x+2)
Soc
|3-2m|=ă(m^2+1)
(3-2m)^2=m^2+1
3m^2-12m+8=0
3(m-2)^2=-8+12=4
Soc
m=2}2/ă3=2}2ă3/3
Ç
Max=2+2ă33
Min=2-2ă3/3
ĚŹęFŽŤÍÍŞăź~šŠçAÚ_ŞćPCQŰŔšBáĄđ
(3)
(31)
ă(x^2+4x+8)+ă(x^2-6x+10)
=ă((x+2)^2+4)+ă((x-3)^2+1)
(x,0) Ć(-2,}2), (3,}1)ÜĹĚŁĚa
ÂÜčA(-2,2)Ć(3,-1) or (-2,-2)Ć(3,1)Ěđ_
5*(2/3)=10/3
đ_(-2+10/3,0)=(4/3,0)ĚĆŤźüÉČéĚĹ
ÂÜčAx=4/3 ĚĆŤ
Min=ă{(3-(-2))^2+(-1-2)^2}=ă34
(32)
under consideration...
(33)
őŞžĘŽ˾˝ĆŤĚŁŞĹZÉČé͸ČĚĹcťĚ_đPơéĆ
PAĚXŤ+PBĚXŤ=PĹĚ@üĚXŤĚQ{ČĚĹc
(p,p^2)
y=2p*x
y=(-1/(2p))*x
((p^2-17/4)/p+(p^2-5/4)/p)/(1-(p^2-17/4)(p^2-5/4)/p^2)
=(-1/p)/(1-1/(2p)^2)
(4p^2-7)/((2p-1)(16p^4-104p^2+85))=0
p1/2, (1/2)ă(13}2ă21) ĚĆŤ
p=}ă7/2
ă(7/4+(7/4-17/4)^2)+ă(7/4+(7/4-5/4)^2)
=3ă2=4.242cEEEąĚĆŤŞĹZĹAp^2=7/4
ă((1/2)^2+(1/4-17/4)^2)+ă((1/2)^2+(1/4-5/4)^2)
=(1/2)(ă65+ă5)=5.149c
ă(((1/2)ă(13+2ă21))^2+(((1/2)ă(13+2ă21))^2-(17/4))^2)
+ă(((1/2)ă(13+2ă21))^2+(((1/2)ă(13+2ă21))^2-5/4)^2)
=7.579c
ă(((1/2)ă(13-2ă21))^2+(((1/2)ă(13-2ă21))^2-(17/4))^2)
+ă(((1/2)ă(13-2ă21))^2+(((1/2)ă(13-2ă21))^2-5/4)^2)
=4.455c
uX[N}v 03/31 2235Ş@ óM XV 4/2
xČčÜľ˝(čÝ...) Orz
âÁĆlŚéÔŞćęÜľ˝ĚĹÄlľÄÝÜľ˝ ^^;
(13)
}ĹlŚéĆ...
ac+bd
=(a,b)(c,d)codĆ
Soc
Max=(5+2)*10=70
Min=-(5+2)*10=-70
Ĺľ˝Šc^^;
(2)
(sinĆ+3)/(sinĆ+2)
(-2,-3)Ćx^2+y^2=1 ăĚ_đńžźüĚXŤ :m
ť¤ČéĆA(-2,-3)Šç ~ÖĚÚüĚXŤťĚŕĚ
ÚüFy+3=m(x+2)
Soc
|3-2m|=ă(m^2+1)
(3-2m)^2=m^2+1
3m^2-12m+8=0
3(m-2)^2=-8+12=4
Soc
m=2}2/ă3
MinÍ}ŠçA(-2,-3)Ć(1,0)ĆđÔźüĚXŤ
MaxÍ(-2,-3)Šç~ x^2+y^2=1 ÖĚÚüĚXŤ
Soc
Min=(0-(-3)/(1-(-2)=3/3=1
MaxÍăĹß˝łĚűČĚĹ
Max=2+2ă33
(32)
qg`iRC|Qj@ai|PCSjC@@oiCOj@C@piOCj
ƨ˘ÄAlŚÄžł˘B
EEEʢzšËô
A(3,-2)
B(-1,4)
źüABĆx,y˛Ěđ_đlŚęÎAťęçĚĚŁĚa=źüAB̡ł
ÉČéíŻĹľ˝Š ^^;
Soc(3+1)^2+(-2-4)^2=4^2+6^2=52
Soc2ă13
(33)
ćśĚqgŞćíŠçČŠÁ˝ŕĚĹ ^^;
¨IÉ...
őŞžĘŽ˾˝ĆŤĚŁŞĹZÉČé͸ČĚĹcťĚ_đPơéĆ
PAĚXŤ-@üĚXŤ=@üĚXŤ+PBĚXŤČĚĹc
PAĚXŤ-PBĚXŤ=2*úüĚXŤ
(p,p^2)
y=2p*x
y=(-1/(2p))*x
soc@üĚXŤ=-1/(2p)
APĚXŤ=(p^2-17/4)/p
BPĚXŤ=(5/4-p^2)/p
Soc
{(17/4-p^2)/p-(p^2-5/4)/p}/(1+(17/4-p^2)(p^2-5/4)/p^2)
=2*(1/(2p))/(1-1/(4p^2))
(4p^2-7)/{(2p-1)(16p^4-104p^2+85)}=0
Socp=}ă7/2
P=(}ă7/2,0)
AP+BP=ă{(ă7/2)^2+(17/4-7/4)^2}+ă{(ă7/2)^2+(5/4-7/4)^2}=3ă2
ĚŹęFdČéĺÉďâľ˝˛ęJĆÔÉ[´ÓľÜˇB
NO4ućÓŠľĚÂ碨śłńv3/22 2042Ş óM XV 4/2
ęüÍ~XđŠľÜľ˝ĚĹA¤B
ućÓŠľĚÂ碨śłńv3/26 2158Ş
óM XV 4/2
OńŠçęÇÁâ[Ş čAąąÉVľfھܡB
âč1
(1)
ƨŤÜˇB
sÍ_ Ć~@ĚüăĚ_ĆĚŁĚ2ćŠçč2đř˘˝lšB
ćÁÄAsĚĹĺEĹŹÍüăĚ_ŞbĆ~@ĚS đńžźüăÉ éƍšB
ĹĺÍ_`ĚĆŤAĹŹÍ_aĚĆŤÉČčܡB
˘cdbÍAOÓŞ3:4:5ĚźpOp`ČĚĹbc5A~@ĚźaŞ2ČĚĹ`cac2šB
ćÁÄsĚ
ĹĺlÍA
ĹŹlÍA
źübcÍAXŤ
ĹA_ đĘéĚĹA
ąęĆA~@
ĆđA§łšéĆA
ćÁÄAĹĺl47ĚĆŤAĹŹl7ĚĆŤ
(2)
âčĚŽđƨŤÜˇB
Í~@ĚüăĚ_ĆbĆđÔźüĚXŤĹˇB
ćÁÄAĚĹĺEĹŹÍAąĚźüŞ~@ĆÚˇéƍšB
ĹĺÍ_`ĚĆŤAĹŹÍ_aĚĆŤÉČčܡB
_bđĘčAXŤĚźüÍA B
(0)ĆA~@ ĆđA§łšéĆA
ťĘŽcđ0ơéĆA
ćÁÄAĹĺlÍ
_bđĘéÚüÍA
E
ĆźČXŤÍA
ĆźČXŤÍA
E
XŤ
ĹA_cđĘéźüÍA
XŤ
ĹA_cđĘéźüÍA
E
(1)A(3)đA§łšéĆA
(2)A(4)đA§łšéĆA
ćÁÄA
Ĺĺl
ĚĆŤ AĹŹl ĚĆŤ
Ą XŤÍA_ĆÚüĚŁÍ2ČĚĹA(0)đ ơéĆA
ĆľÄŕßçęܡB
(3)
ÍAxNgA ĚŕĎšB
ŕĎÍAťęźęĚxNgĚ(即)Ć(ȡpĚ]ˇ)ĚĎšB
]ˇÍAȡpŞ0xĚĆŤĹĺlĚ1AȡpŞ180xĚĆŤĹŹlĚ|1šB
xNg Ě即ÍęčĚ10šB
xNg Ě即ĚĹĺÍAI_ŞaĚƍšB(5+27)
ĹĺlÍAĹŹlÍ
źü`b
đ~@ĆA§łšéĆA
DFÍA´_ÉߢűĚđ_šB
ćÁÄA
Ĺĺl70ĚĆŤ@ăĚ_ÍAAăĚ_Í B
ĹŹl|70ĚĆŤ@ăĚ_ÍAAăĚ_Í B
âč2
ąÖĚŞęÍĆĚlÉć縳ĚlđĆčܡB
ŞqÍA
}Ěć¤ČÝpĚĆĚĆŤAŞqÍ0ÉČčܡB
Ü˝A¢ĹÉA
ćÁÄAÝpĚ]ˇÍČĚĹA
ąÖÍAĆ0ĹłĚlđĆčܡB
ăĚ}Ěć¤ČÝpĚĆĚĆŤ0ÉČčܡB
(ąĚĆđ ƾܡ)
ťĚăAĚlđĆčܡB(ĆÎĚĆŤŕš)
OtÍA¨ćťşĚ}Ěć¤ĹˇB
ćÁÄAĹĺlÍAĹŹlÍ1B
Ą ĚĹĺEĹŹÍA ĆlŚÄAPĘ~Ě㟪đlŚéĆA
_ ĆüăĚ_đÔźüĚXŤĹˇB
ĹŹĚ1ÍŠÄŞŠčܡBĹĺÍAâč1(2)ĆŻlĚlŚĹßçęܡB
âč3
(1)
śĚÍ AEĚÍ đ¸_ơéuuv^ĚOtÉČčܡB
ąĚ}ŠçAĹŹlđĆéÍA|2Šç3ĚÔĚÇąŠÉČčܡB
ąÖĚŞęÍĚlÉć縳ĚlđĆčܡB
ŞqŞ0ĆČéđ˛×ܡB
ÍAÂČŹĚŞu|vĚĆŤĚđšB
ąÖŞ0ĆČéĚÍA šB
|
ĽĽĽĽ |
|
ĽĽĽĽ |
|
|
|
|
|
¸ |
|
Á |
ćÁÄA ĚĆŤAĹŹlÍ ĆČčܡB
Ą ÍA_ Ćźü ăĚ_ĆĚŁĆlŚçęܡB
ÍA_ Ćźü ăĚ_ĆĚŁĆlŚçęܡB
ĹZÍA_ Ć_ ĆđńžęšB
(2)
ƨŤÜˇB
ć1ÍA ĚĆŤĹŹl2đĆčܡB
ć2ÍA ĚĆŤĹŹl0đĆčܡB
ć3ÍAA ĚĆŤĹŹl1đĆčܡB
ZĚĹŹlÍA ĚÍÍĚĆŤĆlŚçęܡB
EܸAĚĎťÉ¢IJ×ܡB
ąÖĚŞęÍłĚlđĆčܡB
ŞqŞ0ĚĆŤđ˛×ܡB
ơéĆA šBij
ÍÂČŹĚŞ}CiXĚĆŤĚđšB
đĚŽÉăüľÜˇB
ąÖĚŞęÍłĚlđĆčܡB
ŞqŞ0ĚĆŤđ˛×ܡB
ÍÂČŹĚŞ}CiXĚĆŤĚđšB
ąęđ
ÉăüˇéĆA ĆČéĚĹA
ąęćčAđßéĆA
ĹŹlÍA ĚĆŤ šB
QlÜĹÉlđvZľÄÝܡB
|
|
|
|
|
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ą }ĚoĚŔWđ ƾܡB
oŠçA˛É˝sČâüđřŤAś}Ěć¤ÉpAqđĆčܡB
šB
}Ěć¤ÉA šB
ÉAE}Ěć¤ÉÎpünbđřŤÜˇB
nbÉ˝sČźüđ`ĆaŠçřŤApAqđßܡB
}Ěć¤É2gĚźpOp`ŞŻČĚĹA šB
ƾġłđvZˇęÎ梹ĆÉČčܡB
(3)
ăĚ_oĚŔWđ ƾܡB
Í0ČăšB
ƨŤÜˇB
ąÖĚŞęÍłĚlđĆčܡB
ŞqŞ0ÉČéĆŤđ˛×ܡB
ÍAÂČŹĚŞ}CiXĚĆŤĚđšB
|
|
ĽĽĽ |
|
ĽĽĽĽ |
|
|
|
|
|
|
|
¸ |
|
Á |
ćÁÄA ĚĆŤAĹŹl đĆčܡB
Ą oĚŔWđ
ƾܡB
ćÁÄA
o`Í
Ć ĆĚŁĆŻśĹˇB
oaÍ
Ć ĆĚŁĆŻśĹˇB
źübcĚŘĐŞ
ĆľČęÎ ŞĹŹĆČčܡB
NO5uOpčKv@@@@04/01
2342Ş óM XV 4/2
ńšçę˝âčĚđš
FłńAâčâżâÉŚÄžł˘BęĹŕ\˘ÜšńŠçAđĆyl[đYŚÄA[ĹÁÄžł˘BŇÁĢܡB