ßaTNRVú
[ŹęŻ]
@@ć423ńwIČAąĺđ
@@@@đĺWúÔFQTú`RTú
mč]ĚüúŤn
ŽŽf(x)đŽŽP(x)ĹÁ˝¤đQ(x)C]čđR(x)ơéB
˝žľCCÍŠRCQ(x)0ŕÂơéB
âP@2023ĚĆŤCĚâÉŚćB
iPjPP(x)Q{PĚĆŤCRP(x)đßćB
iQjPQ(x)Q{{PĚĆŤCR2(x)đßćB
iRjPR(x)R{Q{{PĚĆŤCR3(x)đßćB
iSjPS(x)S{Q{PĚĆŤCR4(x)đßćB
iTjPT(x)S{PĚĆŤCR5(x)đßćB
iUjPU(x)S{R{Q{{PĚĆŤCRU(x)đßćB
âQ@R(x)ĚüúŤđŠľÄCĚâÉŚćB
iPjRP(x)RR(x)ĆČéĚlđßćB
iQjRQ(x)RS(x)ĆČéĚlđßćB
iRjRR(x)RT(x)ĆČéĚlđßćB
iSjRS(x)RU(x)ĆČéĚlđßćB
iTjRP(x)RQ(x)RR(x)RS(x)ĆČéĚlđßćB
iUjRP(x)RQ(x)RR(x)RS(x)RT(x)ĆČéĚlđßćB
iVjRP(x)RQ(x)RR(x)RS(x)RT(x) RU(x)ĆČéĚlđßćB
QlÉľ˝ßĚĺwüâčšB
2021NîcĺwĹÍx2021đxS\Q{PĹÁ˝]čđßćB
2004NĺŞĺwĹÍđłĚŽĆˇéBŽŽđT|PĹÁ˝]čđßćB
ÇÁâčPiočŇÍuW[J[vj
ć417ńŠçĚułOp`ĚÓâ~ĘÉćÁÄÍÜę˝}`ŕĚS~v
V[YĚćTâÚÉČčܡB
ÇÁâčQ
}Ěć¤ÉC~OÉQźüPACĆPBDŞźÉđíÁĢéĆŤC˘OABƢOCDĚĘĎŞľ˘ąĆđŘžšćB
˝žľC_PÍ~OÉ čC_OÍ~OĚSơéB
@
oTupYĹĐçßâüĚô˝wvş`ě@
BLUE BACKS
NO1uW[J[v @02/04 @@
1703Ş óM XV 3/5
ĄúĚ_ĹâčŞUpłęĢ˝ĚĹCĺľÜˇB
ńšçę˝âčĚđš
uW[J[v @02/04 @@
1851Ş óM XV 3/5
ńšçę˝ÇÁâčĚđš
uW[J[v @02/08 @@
0605Ş óM XV 3/5
ńšçę˝QlÉľ˝ĺwüâčĚđš
NO2ukasamav 02/07
0004Ş@ óM XV 3/5
ńšçę˝âčĚđš
ukasamav
02/08
0137Ş@ óM XV 3/5
@ńšçę˝ÇÁâčĚđš
NO3uX[N}v 02/07
2001Ş@ óM XV 3/5
ÇÁâčPiočŇÍuW[J[vj
ć417ńŠçĚułOp`ĚÓâ~ĘÉćÁÄÍÜę˝}`ŕĚS~v
V[YĚćTâÚÉČčܡB@
ń
1Ó2ĚłOp`ĚĚ1Ó1ĚłOp`Ĺc
O¤ĚĺŤČłOp`Ěł=ă3
¸_ŠçdSÜĹĚŁ=(2ă3/3)
SocbĚźaR=2ă3/3-1=(2ă3-3)/3@=0.1547c
łĚźađrơéĆc
ű׍Ěčćčc
(ă3/3-R-r)^2=r*(2+r)
((3-ă3)/3-r)^2=r*(2+r)
(3-ă3)^2/9=(2+2(3-ă3)/3)*r
r=(9-4ă3)/33@=0.062c
ÇÁâčQ
}Ěć¤ÉC~OÉQźüPACĆPBDŞźÉđíÁĢéĆŤC˘OABƢOCDĚĘĎŞľ˘ąĆđŘžšćB
˝žľC_PÍ~OÉ čC_OÍ~OĚSơéB
uX[N}v 02/12
1902Ş@ óM XV 3/5
â1
(6jPU(x)S{R{Q{{PĚĆŤCRU(x)đßćB
f(x)=x^2023=(x^5-1)/(x-1)*Q(6)+a*x^3+b*x^2+c*x+d
x^5-1=0 Ě1ČOĚŞĚęÂđzơéc
f(z)=z^3=a*z^3+b*z^2+c*z+d
soca=1,b=c=d=0
soc
R6(x)=x^3
źŕŻść¤ÉlŚęÎc
(1)
PP(x)Q{PĚĆŤCRP(x)đßćB
f(x)=x^2023=(x^4-1)/(x^2-1)*Q(1)(x)+a*x+b
f(z)=z^3=-z=a*z+b
socR1(x)=-x
(2)
PQ(x)Q{{PĚĆŤCR2(x)đßćB
f(x)=x^2023=(x^2+x+1)*Q(2)(x)+a*x*b
=(x^3-1)/(x-1)*Q2(x)+a*x+b
z^3=1
f(z)=z=a*z+b
soca=1,b=0
socR2(x)=x
(3)
PR(x)R{Q{{PĚĆŤCR3(x)đßćB
f(x)=(x^3+x^2+x+1)*Q3(x)+a*x^2+b*x+c
=(x^4-1)/(x-1)*Q3(x)+a*x^2+b*x+c
z^4=1
f(z)=z^3=a*z^2+b*z+c=-z^2-z-1
soc
R3(x)=-x^2-x-1
(4)
PS(x)S{Q{PĚĆŤCR4(x)đßćB
f(x)=(x^4+x^3+x^2+x+1)*Q4(x)+a*x^3+b*x^2+c*x+d
=(x^6-1)/(x^2-1)*Q4(x)+a*x^3+b*x^2+c*x+d
z^6=1
f(z)=z=a*z^3+b*z^2+c*z+d
soc
R4(x)=x
(5)
PT(x)S{PĚĆŤCR5(x)đßćB
f(x)=(x^4+1)*Q5(x)+a*x^3+b*x^2+c*x+d
(x^8-1)/(x^4-1)*Q5(x)+a*x^3+b*x^2+c*x+d
z^4=-1
f(z)=(z^4)^(505)*z^3=-z^3=a*z^3+b*z^2+c*z+d
soc
R5(x)=-x^3
uX[N}v 02/20
2052Ş@ óM XV 3/5
â2
ÓĄŞćÍßȢĚšŞc
ăĚâčÉŚłęĢéŕĚĹlŚéĆc
PP(x)Q{P
PQ(x)Q{{P
PR(x)R{Q{{P
PS(x)S{Q{P
PT(x)S{P
PU(x)S{R{Q{{P
i21jRP(x)RR(x)ĆČéĚlđßćB
4,4ĚĹŹö{
ČşAkđŠRơé
Socm=4k
i22jRQ(x)RS(x)ĆČéĚlđßćB
3,6ĚĹŹö{
Socm=6k
i23jRR(x)RT(x)ĆČéĚlđßćB
4,8ĚĹŹö{
Socm=8k
i24jRS(x)RU(x)ĆČéĚlđßćB
6,5ĚĹŹö{
Socm=30k
i25jRP(x)RQ(x)RR(x)RS(x)ĆČéĚlđßćB
4,3,4,6ĚĹŹö{
Socm=12k
i26jRP(x)RQ(x)RR(x)RS(x)RT(x)ĆČéĚlđßćB
4,3,4,6,8
ĚĹŹö{
Socm=24k
i27jRP(x)RQ(x)RR(x)RS(x)RT(x) RU(x)ĆČéĚlđßćB
4,3,4,6,8,5ĚĹŹö{
Socm=120k
ĚŹęFč]ŞęvˇéęÍźÉŕ čܡB
uX[N}v
02/22
1057Ş@ óM XV 3/5
â2
ăĚâ1ÉŚłęĢéŕĚĹlŚéĆc ÜčĚüúÍ...
PP(x)Q{PEEE(x^4-1)/(x^2-1)EEEx,-1,-x,1 Ě4üú
PQ(x)Q{{PEEE(x^3-1)/(x-1)EEEx,x^2=-x-1,1 Ě3üú
PR(x)R{Q{{PEEE(x^4-1)/(x-1)EEEx,x^2,(-x^2-x-1),1 Ě4üú
PS(x)S{Q{PEEE(x^6-1)/(x^2-1)EEEx,x^2,x^3,(-x^2-1),(-x^3-x),1 Ě6üú
PT(x)S{PEEE(x^8-1)/(x^4-1)EEEx,x^2,x^3,-1,-x,-x^2,-x^3,1 Ě8üú
PU(x)S{R{Q{{PEEE(x^5-1)/(x-1)EEEx,x^2,x^3,(-x^3-x^2-x-1),1 Ě5üú
i21jRP(x)RR(x)ĆČéĚlđßćB
4,4ĚĹŹö{ 4
ČşAkđŠRơé
x,1ŞŻśČĚĹc
Socm=4k-1,4k
i22jRQ(x)RS(x)ĆČéĚlđßćB
PQ(x)Q{{PEEE(x^3-1)/(x-1)EEEx,(-x-1),1
PS(x)S{Q{PEEE(x^6-1)/(x^2-1)EEEx,x^2,x^3,(-x^2-1),(-x^3-x),1
x,1ŞŻśČĚĹc
3,6ĚĹŹö{ 6
Socm=6k-5,6k
i23jRR(x)RT(x)ĆČéĚlđßćB
PR(x)R{Q{{PEEE(x^4-1)/(x-1)EEEx,x^2,(-x^2-x-1),1
PT(x)S{PEEE(x^8-1)/(x^4-1)EEEx,x^2,x^3,-1,-x,-x^2,-x^3,1
X,x^2,1ŞŻś
4,8ĚĹŹö{ 8
Socm=8k-7,8k-6,8k
i24jRS(x)RU(x)ĆČéĚlđßćB
PS(x)S{Q{PEEE(x^6-1)/(x^2-1)EEEx,x^2,x^3,(-x^2-1),(-x^3-x),1
PU(x)S{R{Q{{PEEE(x^5-1)/(x-1)EEEx,x^2,x^3,(-x^3-x^2-x-1),1
x,x^2,x^3,1ŞŻśc
6,5ĚĹŹö{ 30
Socm=30k-29,30k-28,30k-27,30k
i25jRP(x)RQ(x)RR(x)RS(x)ĆČéĚlđßćB
PP(x)Q{PEEE(x^4-1)/(x^2-1)EEEx,-1,-x,1
PQ(x)Q{{PEEE(x^3-1)/(x-1)EEEx,x^2=-x-1,1
PR(x)R{Q{{PEEE(x^4-1)/(x-1)EEEx,x^2,(-x^2-x-1),1
PS(x)S{Q{PEEE(x^6-1)/(x^2-1)EEEx,x^2,x^3,-x^2-1,-x^3-x,1
x,1 ŞŻśc
4,3,4,6ĚĹŹö{ 12
Socm=12k-11,12k
i26jRP(x)RQ(x)RR(x)RS(x)RT(x)ĆČéĚlđßćB
PP(x)Q{PEEE(x^4-1)/(x^2-1)EEEx,-1,-x,1
PQ(x)Q{{PEEE(x^3-1)/(x-1)EEEx,x^2=-x-1,1
PR(x)R{Q{{PEEE(x^4-1)/(x-1)EEEx,x^2,(-x^2-x-1),1
PS(x)S{Q{PEEE(x^6-1)/(x^2-1)EEEx,x^2,x^3,-x^2-1,-x^3-x,1
PT(x)S{PEEE(x^8-1)/(x^4-1)EEEx,x^2,x^3,-1,-x,-x^2,-x^3,1
x,1ŞŻśc
4,3,4,6,8 ĚĹŹö{ 24
Socm=24k-23,24k
i27jRP(x)RQ(x)RR(x)RS(x)RT(x)RU(x)ĆČéĚlđßćB
PP(x)Q{PEEE(x^4-1)/(x^2-1)EEEx,-1,-x,1
PQ(x)Q{{PEEE(x^3-1)/(x-1)EEEx,x^2=-x-1,1
PR(x)R{Q{{PEEE(x^4-1)/(x-1)EEEx,x^2,(-x^2-x-1),1
PS(x)S{Q{PEEE(x^6-1)/(x^2-1)EEEx,x^2,x^3,-x^2-1,-x^3-x,1
PT(x)S{PEEE(x^8-1)/(x^4-1)EEEx,x^2,x^3,-1,-x,-x^2,-x^3,1
PU(x)S{R{Q{{PEEE(x^5-1)/(x-1)EEEx,x^2,x^3,(-x^3-x^2-x-1),1
x,1ŞŻśc
4,3,4,6,8,5ĚĹŹö{ 120
Socm=120k-119,120k
NO4ućÓŠľĚÂ碨śłńv2/13 1720Ş óM XV 3/5
â1
ePn(x)đ0ơéđ˛×ܡB
E i-1Ě˝űŞj
E
(1̧űŞĹ1ĹȢŕĚ)
E
(1Ě4ćŞĹ1ĹȢŕĚ)
E
(1Ě3ćŞĹ1ĹȢŕĚĆA-1Ě3ćŞĹ -1ĹȢŕĚ
ÂÜčA1Ě6ćŞĹ}1ĹȢŕĚ)
E i-1Ě4ćŞj
E
P6(x)đ0ơéÍA1Ě5ćŞĹA1ČOĚŕĚšB
@360572ČĚĹA šBik1,2,3,4j
@˝žľAąęĹvZˇéĆĘ|šB
Ĺ
ĆČé
đăüľÜˇB
ˇéĆA
ąĚăÍAąĚşüĚŽ(*)ĹlŚÜˇB
(1) ÍA4ćˇéĆA1ÉČéĚĹA
Ü˝A ÍA2ŽČĚĹA
ƾܡB
(2) ÍA3ćˇéĆA1ÉČéĚĹA
Ü˝A ÍA2ŽČĚĹA
ƾܡB
(3) ÍA4ćˇéĆA1ÉČéĚĹA
Ü˝A ÍA3ŽČĚĹA
ƾܡB
(4) ÍA6ćˇéĆA1ÉČéĚĹA
Ü˝A ÍA4ŽČĚĹA
ƾܡB
(5) ÍA8ćˇéĆA1ÉČéĚĹA
Ü˝A ÍA4ŽČĚĹA
ƾܡB
(6) šB
đęÜĆßÉľÄlŚÜˇB
ČĚĹA
ܸA đ
ĹéąĆđlŚÜˇB
ơéĆA1Ž ĹéĚĹA]čRÍčÉČčܡB
ơéĆA
äŚÉA
źÓđ {ˇéĆA
ĆČéĚĹA]č šB
ućÓŠľĚÂ碨śłńv2/14 2005Ş óM XV 3/5
â2
Pn(x)đ0ơéÍA1Ě׍ćŞČĚĹA ĚlÍüúIÉŻślđJčԾܡB
1ĚĆŤÍA šB
E
đ0ơé
ÍA4ćˇéĆA1ÉČčܡB
@ ÍAŞ4ŚéĆŻślđĆčܡB
(*)ĚŽ ĹlŚÜˇB
ÍA
đJčԾܡB
ăĚâčűÍAęĚŞ˝vZŞĘ|šB
ĘĚű@đlŚÜˇB
E đ0ơé
ÍA4ćˇéĆA1ÉČčܡB
ÂÜčA ÍAŞ4ŚéĆŻślđĆčܡB
Ě`đlŚÜˇB
Ş1ŠçnßÄA{ľÄ˘ĆA
ÂÜčA ÍA
đJčԾܡB
ăĚĘĆŻśÉČčÜľ˝B
E đ0ơé
ÍA3ćˇéĆA1ÉČčܡB
ÂÜčA ÍAŞ3ŚéĆŻślđĆčܡB
Ě`ÉĎ`ˇéĆA
Ş1ŠçnßÄA{ľÄ˘ĆA
ÂÜčA ÍA
đJčԾܡB
E đ0ơé
ÍA4ćˇéĆA1ÉČčܡB
ÂÜčA ÍAŞ4ŚéĆŻślđĆčܡB
Ě`ÉĎ`ˇéĆA
Ş1ŠçnßÄA{ľÄ˘ĆA
ÂÜčA ÍA
đJčԾܡB
E đ0ơé
ÍA6ćˇéĆA1ÉČčܡB
ÂÜčA ÍAŞ6ŚéĆŻślđĆčܡB
iÖÍAŞ3ŚéĆŻślđĆčܡŞj
Ě`ÉĎ`ˇéĆA
Ş1ŠçnßÄA{ľÄ˘ĆA