ßaTNRVú
[ŹęŻ]
@@ć423ńwIČAąĺđ
@@@@đĺWúÔFQTú`RTú
mč]ĚüúŤn
ŽŽf(x)đŽŽP(x)ĹÁ˝¤đQ(x)C]čđR(x)ơéB
˝žľCCÍŠRCQ(x)0ŕÂơéB
âP@2023ĚĆŤCĚâÉŚćB
iPjPP(x)Q{PĚĆŤCRP(x)đßćB
iQjPQ(x)Q{{PĚĆŤCR2(x)đßćB
iRjPR(x)R{Q{{PĚĆŤCR3(x)đßćB
iSjPS(x)S{Q{PĚĆŤCR4(x)đßćB
iTjPT(x)S{PĚĆŤCR5(x)đßćB
iUjPU(x)S{R{Q{{PĚĆŤCRU(x)đßćB
âQ@R(x)ĚüúŤđŠľÄCĚâÉŚćB
iPjRP(x)RR(x)ĆČéĚlđßćB
iQjRQ(x)RS(x)ĆČéĚlđßćB
iRjRR(x)RT(x)ĆČéĚlđßćB
iSjRS(x)RU(x)ĆČéĚlđßćB
iTjRP(x)RQ(x)RR(x)RS(x)ĆČéĚlđßćB
iUjRP(x)RQ(x)RR(x)RS(x)RT(x)ĆČéĚlđßćB
iVjRP(x)RQ(x)RR(x)RS(x)RT(x) RU(x)ĆČéĚlđßćB
QlÉľ˝ßĚĺwüâčšB
2021NîcĺwĹÍx2021đxS\Q{PĹÁ˝]čđßćB
2004NĺŞĺwĹÍđłĚŽĆˇéBŽŽđT|PĹÁ˝]čđßćB
ÇÁâčPiočŇÍuW[J[vj
ć417ńŠçĚułOp`ĚÓâ~ĘÉćÁÄÍÜę˝}`ŕĚS~v
V[YĚćTâÚÉČčܡB
ÇÁâčQ
}Ěć¤ÉC~OÉQźüPACĆPBDŞźÉđíÁĢéĆŤC˘OABƢOCDĚĘĎŞľ˘ąĆđŘžšćB
˝žľC_PÍ~OÉ čC_OÍ~OĚSơéB
@
oTupYĹĐçßâüĚô˝wvş`ě@
BLUE BACKS
NO1uW[J[v @02/04 @@
1703Ş óM XV 3/5
ĄúĚ_ĹâčŞUpłęĢ˝ĚĹCĺľÜˇB
ńšçę˝âčĚđš
uW[J[v @02/04 @@
1851Ş óM XV 3/5
ńšçę˝ÇÁâčĚđš
uW[J[v @02/08 @@
0605Ş óM XV 3/5
ńšçę˝QlÉľ˝ĺwüâčĚđš
NO2ukasamav 02/07
0004Ş@ óM XV 3/5
ńšçę˝âčĚđš
ukasamav
02/08
0137Ş@ óM XV 3/5
@ńšçę˝ÇÁâčĚđš
NO3uX[N}v 02/07
2001Ş@ óM XV 3/5
ÇÁâčPiočŇÍuW[J[vj
ć417ńŠçĚułOp`ĚÓâ~ĘÉćÁÄÍÜę˝}`ŕĚS~v
V[YĚćTâÚÉČčܡB@
ń
1Ó2ĚłOp`ĚĚ1Ó1ĚłOp`Ĺc
O¤ĚĺŤČłOp`Ěł=ă3
¸_ŠçdSÜĹĚŁ=(2ă3/3)
SocbĚźaR=2ă3/3-1=(2ă3-3)/3@=0.1547c
łĚźađrơéĆc
ű׍Ěčćčc
(ă3/3-R-r)^2=r*(2+r)
((3-ă3)/3-r)^2=r*(2+r)
(3-ă3)^2/9=(2+2(3-ă3)/3)*r
r=(9-4ă3)/33@=0.062c
ÇÁâčQ
}Ěć¤ÉC~OÉQźüPACĆPBDŞźÉđíÁĢéĆŤC˘OABƢOCDĚĘĎŞľ˘ąĆđŘžšćB
˝žľC_PÍ~OÉ čC_OÍ~OĚSơéB
uX[N}v 02/12
1902Ş@ óM XV 3/5
â1
(6jPU(x)S{R{Q{{PĚĆŤCRU(x)đßćB
f(x)=x^2023=(x^5-1)/(x-1)*Q(6)+a*x^3+b*x^2+c*x+d
x^5-1=0 Ě1ČOĚŞĚęÂđzơéc
f(z)=z^3=a*z^3+b*z^2+c*z+d
soca=1,b=c=d=0
soc
R6(x)=x^3
źŕŻść¤ÉlŚęÎc
(1)
PP(x)Q{PĚĆŤCRP(x)đßćB
f(x)=x^2023=(x^4-1)/(x^2-1)*Q(1)(x)+a*x+b
f(z)=z^3=-z=a*z+b
socR1(x)=-x
(2)
PQ(x)Q{{PĚĆŤCR2(x)đßćB
f(x)=x^2023=(x^2+x+1)*Q(2)(x)+a*x*b
=(x^3-1)/(x-1)*Q2(x)+a*x+b
z^3=1
f(z)=z=a*z+b
soca=1,b=0
socR2(x)=x
(3)
PR(x)R{Q{{PĚĆŤCR3(x)đßćB
f(x)=(x^3+x^2+x+1)*Q3(x)+a*x^2+b*x+c
=(x^4-1)/(x-1)*Q3(x)+a*x^2+b*x+c
z^4=1
f(z)=z^3=a*z^2+b*z+c=-z^2-z-1
soc
R3(x)=-x^2-x-1
(4)
PS(x)S{Q{PĚĆŤCR4(x)đßćB
f(x)=(x^4+x^3+x^2+x+1)*Q4(x)+a*x^3+b*x^2+c*x+d
=(x^6-1)/(x^2-1)*Q4(x)+a*x^3+b*x^2+c*x+d
z^6=1
f(z)=z=a*z^3+b*z^2+c*z+d
soc
R4(x)=x
(5)
PT(x)S{PĚĆŤCR5(x)đßćB
f(x)=(x^4+1)*Q5(x)+a*x^3+b*x^2+c*x+d
(x^8-1)/(x^4-1)*Q5(x)+a*x^3+b*x^2+c*x+d
z^4=-1
f(z)=(z^4)^(505)*z^3=-z^3=a*z^3+b*z^2+c*z+d
soc
R5(x)=-x^3
uX[N}v 02/20
2052Ş@ óM XV 3/5
â2
ÓĄŞćÍßȢĚšŞc
ăĚâčÉŚłęĢéŕĚĹlŚéĆc
PP(x)Q{P
PQ(x)Q{{P
PR(x)R{Q{{P
PS(x)S{Q{P
PT(x)S{P
PU(x)S{R{Q{{P
i21jRP(x)RR(x)ĆČéĚlđßćB
4,4ĚĹŹö{
ČşAkđŠRơé
Socm=4k
i22jRQ(x)RS(x)ĆČéĚlđßćB
3,6ĚĹŹö{
Socm=6k
i23jRR(x)RT(x)ĆČéĚlđßćB
4,8ĚĹŹö{
Socm=8k
i24jRS(x)RU(x)ĆČéĚlđßćB
6,5ĚĹŹö{
Socm=30k
i25jRP(x)RQ(x)RR(x)RS(x)ĆČéĚlđßćB
4,3,4,6ĚĹŹö{
Socm=12k
i26jRP(x)RQ(x)RR(x)RS(x)RT(x)ĆČéĚlđßćB
4,3,4,6,8
ĚĹŹö{
Socm=24k
i27jRP(x)RQ(x)RR(x)RS(x)RT(x) RU(x)ĆČéĚlđßćB
4,3,4,6,8,5ĚĹŹö{
Socm=120k
ĚŹęFč]ŞęvˇéęÍźÉŕ čܡB
uX[N}v
02/22
1057Ş@ óM XV 3/5
â2
ăĚâ1ÉŚłęĢéŕĚĹlŚéĆc ÜčĚüúÍ...
PP(x)Q{PEEE(x^4-1)/(x^2-1)EEEx,-1,-x,1 Ě4üú
PQ(x)Q{{PEEE(x^3-1)/(x-1)EEEx,x^2=-x-1,1 Ě3üú
PR(x)R{Q{{PEEE(x^4-1)/(x-1)EEEx,x^2,(-x^2-x-1),1 Ě4üú
PS(x)S{Q{PEEE(x^6-1)/(x^2-1)EEEx,x^2,x^3,(-x^2-1),(-x^3-x),1 Ě6üú
PT(x)S{PEEE(x^8-1)/(x^4-1)EEEx,x^2,x^3,-1,-x,-x^2,-x^3,1 Ě8üú
PU(x)S{R{Q{{PEEE(x^5-1)/(x-1)EEEx,x^2,x^3,(-x^3-x^2-x-1),1 Ě5üú
i21jRP(x)RR(x)ĆČéĚlđßćB
4,4ĚĹŹö{ 4
ČşAkđŠRơé
x,1ŞŻśČĚĹc
Socm=4k-1,4k
i22jRQ(x)RS(x)ĆČéĚlđßćB
PQ(x)Q{{PEEE(x^3-1)/(x-1)EEEx,(-x-1),1
PS(x)S{Q{PEEE(x^6-1)/(x^2-1)EEEx,x^2,x^3,(-x^2-1),(-x^3-x),1
x,1ŞŻśČĚĹc
3,6ĚĹŹö{ 6
Socm=6k-5,6k
i23jRR(x)RT(x)ĆČéĚlđßćB
PR(x)R{Q{{PEEE(x^4-1)/(x-1)EEEx,x^2,(-x^2-x-1),1
PT(x)S{PEEE(x^8-1)/(x^4-1)EEEx,x^2,x^3,-1,-x,-x^2,-x^3,1
X,x^2,1ŞŻś
4,8ĚĹŹö{ 8
Socm=8k-7,8k-6,8k
i24jRS(x)RU(x)ĆČéĚlđßćB
PS(x)S{Q{PEEE(x^6-1)/(x^2-1)EEEx,x^2,x^3,(-x^2-1),(-x^3-x),1
PU(x)S{R{Q{{PEEE(x^5-1)/(x-1)EEEx,x^2,x^3,(-x^3-x^2-x-1),1
x,x^2,x^3,1ŞŻśc
6,5ĚĹŹö{ 30
Socm=30k-29,30k-28,30k-27,30k
i25jRP(x)RQ(x)RR(x)RS(x)ĆČéĚlđßćB
PP(x)Q{PEEE(x^4-1)/(x^2-1)EEEx,-1,-x,1
PQ(x)Q{{PEEE(x^3-1)/(x-1)EEEx,x^2=-x-1,1
PR(x)R{Q{{PEEE(x^4-1)/(x-1)EEEx,x^2,(-x^2-x-1),1
PS(x)S{Q{PEEE(x^6-1)/(x^2-1)EEEx,x^2,x^3,-x^2-1,-x^3-x,1
x,1 ŞŻśc
4,3,4,6ĚĹŹö{ 12
Socm=12k-11,12k
i26jRP(x)RQ(x)RR(x)RS(x)RT(x)ĆČéĚlđßćB
PP(x)Q{PEEE(x^4-1)/(x^2-1)EEEx,-1,-x,1
PQ(x)Q{{PEEE(x^3-1)/(x-1)EEEx,x^2=-x-1,1
PR(x)R{Q{{PEEE(x^4-1)/(x-1)EEEx,x^2,(-x^2-x-1),1
PS(x)S{Q{PEEE(x^6-1)/(x^2-1)EEEx,x^2,x^3,-x^2-1,-x^3-x,1
PT(x)S{PEEE(x^8-1)/(x^4-1)EEEx,x^2,x^3,-1,-x,-x^2,-x^3,1
x,1ŞŻśc
4,3,4,6,8 ĚĹŹö{ 24
Socm=24k-23,24k
i27jRP(x)RQ(x)RR(x)RS(x)RT(x)RU(x)ĆČéĚlđßćB
PP(x)Q{PEEE(x^4-1)/(x^2-1)EEEx,-1,-x,1
PQ(x)Q{{PEEE(x^3-1)/(x-1)EEEx,x^2=-x-1,1
PR(x)R{Q{{PEEE(x^4-1)/(x-1)EEEx,x^2,(-x^2-x-1),1
PS(x)S{Q{PEEE(x^6-1)/(x^2-1)EEEx,x^2,x^3,-x^2-1,-x^3-x,1
PT(x)S{PEEE(x^8-1)/(x^4-1)EEEx,x^2,x^3,-1,-x,-x^2,-x^3,1
PU(x)S{R{Q{{PEEE(x^5-1)/(x-1)EEEx,x^2,x^3,(-x^3-x^2-x-1),1
x,1ŞŻśc
4,3,4,6,8,5ĚĹŹö{ 120
Socm=120k-119,120k
NO4ućÓŠľĚÂ碨śłńv2/13 1720Ş óM XV 3/5
â1
ePn(x)đ0ơéđ˛×ܡB
E i-1Ě˝űŞj
E
(1̧űŞĹ1ĹȢŕĚ)
E
(1Ě4ćŞĹ1ĹȢŕĚ)
E
(1Ě3ćŞĹ1ĹȢŕĚĆA-1Ě3ćŞĹ -1ĹȢŕĚ
ÂÜčA1Ě6ćŞĹ}1ĹȢŕĚ)
E i-1Ě4ćŞj
E
P6(x)đ0ơéÍA1Ě5ćŞĹA1ČOĚŕĚšB
@360572ČĚĹA šBik1,2,3,4j
@˝žľAąęĹvZˇéĆĘ|šB
Ĺ ĆČé đăüľÜˇB
ˇéĆA
ąĚăÍAąĚşüĚŽ(*)ĹlŚÜˇB
(1) ÍA4ćˇéĆA1ÉČéĚĹA
Ü˝A ÍA2ŽČĚĹA ƾܡB
(2) ÍA3ćˇéĆA1ÉČéĚĹA
Ü˝A ÍA2ŽČĚĹA ƾܡB
(3) ÍA4ćˇéĆA1ÉČéĚĹA
Ü˝A ÍA3ŽČĚĹA ƾܡB
(4) ÍA6ćˇéĆA1ÉČéĚĹA
Ü˝A ÍA4ŽČĚĹA ƾܡB
(5) ÍA8ćˇéĆA1ÉČéĚĹA
Ü˝A ÍA4ŽČĚĹA ƾܡB
(6) šB
đęÜĆßÉľÄlŚÜˇB
ČĚĹA
ܸA đ ĹéąĆđlŚÜˇB
ơéĆA1Ž ĹéĚĹA]čRÍčÉČčܡB
ơéĆA
äŚÉA
źÓđ {ˇéĆA
ĆČéĚĹA]č šB
ućÓŠľĚÂ碨śłńv2/14 2005Ş óM XV 3/5
â2
Pn(x)đ0ơéÍA1Ě׍ćŞČĚĹA ĚlÍüúIÉŻślđJčԾܡB
1ĚĆŤÍA šB
E
đ0ơé ÍA4ćˇéĆA1ÉČčܡB
@ ÍAŞ4ŚéĆŻślđĆčܡB
(*)ĚŽ ĹlŚÜˇB
ÍA đJčԾܡB
ăĚâčűÍAęĚŞ˝vZŞĘ|šB
ĘĚű@đlŚÜˇB
E đ0ơé ÍA4ćˇéĆA1ÉČčܡB
ÂÜčA ÍAŞ4ŚéĆŻślđĆčܡB
Ě`đlŚÜˇB
Ş1ŠçnßÄA{ľÄ˘ĆA
ÂÜčA ÍA đJčԾܡB
ăĚĘĆŻśÉČčÜľ˝B
E đ0ơé ÍA3ćˇéĆA1ÉČčܡB
ÂÜčA ÍAŞ3ŚéĆŻślđĆčܡB
Ě`ÉĎ`ˇéĆA
Ş1ŠçnßÄA{ľÄ˘ĆA
ÂÜčA ÍA đJčԾܡB
E đ0ơé ÍA4ćˇéĆA1ÉČčܡB
ÂÜčA ÍAŞ4ŚéĆŻślđĆčܡB
Ě`ÉĎ`ˇéĆA
Ş1ŠçnßÄA{ľÄ˘ĆA
ÂÜčA ÍA đJčԾܡB
E đ0ơé ÍA6ćˇéĆA1ÉČčܡB
ÂÜčA ÍAŞ6ŚéĆŻślđĆčܡB
iÖÍAŞ3ŚéĆŻślđĆčܡŞj
Ě`ÉĎ`ˇéĆA
Ş1ŠçnßÄA{ľÄ˘ĆA
ÂÜčA ÍA đJčԾܡB
E đ0ơé ÍA8ćˇéĆA1ÉČčܡB
ÂÜčA ÍAŞ8ŚéĆŻślđĆčܡB
Ě`ÉĎ`ˇéĆA
Ş1ŠçnßÄA{ľÄ˘ĆA
ÂÜčA ÍA đJčԾܡB
E đ0ơé ÍA5ćˇéĆA1ÉČčܡB
ÂÜčA ÍAŞ5ŚéĆŻślđĆčܡB
Ě`ÉĎ`ˇéĆA
Ş1ŠçnßÄA{ľÄ˘ĆA
ÂÜčA ÍA đJčԾܡB
ÜĆßéĆA
ÍAüúŞ4ĹAA
ÍAüúŞ3ĹAA
ÍAüúŞ4ĹAA
ÍAüúŞ6ĹAA
ÍAüúŞ8ĹA
ÍAüúŞ5ĹA
ČăŠçđŠRĆľÄA
(1)R1(x)R3(x)ĆČéĚÍAĆŕÉüúŞ4ČĚĹA
4(|1){PA4k
(2)R2(x)R4(x)ĆČéĚÍA3Ć6ĚĹŹö{đlŚÄA
6(|1){1A6
(3)R3(x)R5(x)ĆČéĚÍA4Ć8ĚĹŹö{đlŚÄA
8(|1){1A8(|1){2A8
(4)R4(x)R6(x)ĆČéĚÍA6Ć5ĚĹŹö{đlŚŚÄA
30(|1){1A30(|1){2A30(|1){3A30
(5)R1(x)R2(x)R3(x)R4(x)ĆČéĚÍA4A3A4A6ĚĹŹö{đlŚÄA
12(|1){1A12
(6)R1(x)R2(x)R3(x)R4(x)R5(x)ĆČéĚÍA4A3A4A6A8ĚĹŹö{đlŚÄA
24(|1){1A24
(7)R1(x)R2(x)R3(x)R4(x)R5(x)R6(x)ĆČéĚÍA4A3A4A6A8A5ĚĹŹö{đlŚÄA
120(|1){1A120
ÇÁâč1
EăAśăAşĚe~ĚSđťęźę`AaAbƾܡB
˘`abÍłOp`Ĺ~bĚSjÍA˘`abĚüĚđ_ČĚĹdSšB
dSÍü̸_ĚűŠç2F1ĚŕŞ_šB
˘`abĚ1Ó̡łŞ2ČĚĹAü šB
ˇéĆA
ČĚĹA~bĚźaÍA šB
~`AaAbAłÍݢÉھĢéĚĹAfJgĚ~čđg˘ÜˇB
~`AaĚźaÍ1A~bĚźaÍ
A~łĚźađơéĆA
1ÍsKČĚĹA
ÇÁâčQ
2ÂĚOp`ĚĘĎÍAĚŽĹ\šÜˇB
ĘĎĚvZÉg¤Ó̡łÍA~Ěźaš×Äľ˘ĹˇB
ČĚĹA đmŠßܡB
ľ¸Â}đĎ`ľČŞçlŚÜˇB
E}1
~nŞśĆşĹźüĆھĢéƾܡB
Ú_đ`AaơéĆA˘n`aÍźpńÓOp`šB
E}2
˝ČźüđľăɸçľÜˇB
}Ěć¤É_aAcAeđßܡB
ˇéĆ ˘n`a˘nacĆČčܡB
ČşČçA_aŠçźün`ÜĹĚŁA_cŠçźün`ÜĹĚŁŞľČéĚĹA
ńÂĚOp`ĚęÓĆłŞľČéŠçšB
Ü˝AÚ`naÚcneĹ éąĆઊčܡB
ČşČçA˘nacŞńÓOp`Ĺźü`eĆacŞ˝sžŠçšB
E}3
ɟȟüđEÉľ¸çľÜˇB
}Ěć¤ÉA_`AbAdAfđßܡB
idÍcn̡ăšBÜ˝AfÍ}1Ĺ`žÁ˝ĆąëšBj
ˇéĆAÚcneÚdnfšBiθpj
ćÁÄAÚanfÚdnfšBiÚanfÍ}2ĹÚ`našj
˘n`bŞńÓOp`ČĚĹAÚ`nfÚbnfšB
ćÁÄAÚ`naÚbndšB
ČăŠçA˘n`a̸pÚ`naiÚbndjƢnbc̸pÚbncĚaŞ180Ĺ éąĆŞíŠčܡB
NO5uOpčKv@@@@02/04
1322Ş óM XV 2/5
ńšçę˝âčĚđš
ńšçę˝ÇÁâčĚđš
<
ĚŹęF2023NsĺwOúúöwinjć1âĚâ2ĚâčĆâPiUjĚâčÍŮÚŻśĹľ˝B˛žł˘B
ÇÁâčQĚđ@
@}Ěć¤É, üŞbaĆ, pđbn̡Ć~Ěđ_ÉĆčC~üpÚbpcđěéB
Ü˝, Ú`na=Qż, ÚbncQŔơéB
lp`bacpÍ~ÉŕÚˇéŠç, Úbac{ÚbpcPWOEEE@@
~üpĆSpĚÖWŠç, Ú`baż,ÚbpcŔ
Ü˝,Úbacż{XOi˘boaĚOpŠçj
ćÁÄ, @ÉăüľÄ, iż{XOj{ŔPWO
ĚÉ, Qż{QŔPWO
ąąĹ, ~nĚźađĆľÄ, čÓĚQÂĚOp`ĚĘĎđ\ˇĆ,
˘n`ai1/2jQQż@@,@˘nbci1/2jQQŔ
QŔiPWO\QżjQżŠç
@Śż,@˘n`a˘nbc@@ŘžIíč
ÇÁâčQĚđ@ĚĘđ
uW[J[v @03/07 @@
1236Ş óM XV 3/7
FłńAâčâżâÉŚÄžł˘BęĹŕ\˘ÜšńŠçAđĆyl[đYŚÄA[ĹÁÄžł˘BŇÁĢܡB